
ALGORITHM-ARCHITECTURE  CO-DESIGN  

Al Geist 
Oak Ridge National Laboratory 

SOS 18 
St. Moritz, Switzerland 
March 17-20, 2014 

Research	  supported	  by	  DOE	  ASCR	  

Does it Work? Five 
Years of Experience 



2  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Our Goal Aligns Well with SOS 18 Theme 

This	  talk	  will	  focus	  on	  our	  research	  goal	  of:	  	  
Closing	  the	  	  “applica7on-‐architecture	  
performance	  gap”	  
	  
	  
The	  difference	  between	  the	  peak	  performance	  
of	  a	  system	  and	  the	  performance	  achieved	  by	  
real	  science	  applica@ons.	  
	  
This	  gap	  con@nues	  to	  get	  wider	  due	  to	  rapidly	  
increasing	  parallelism,	  and	  increasing	  
heterogeneity	  of	  the	  hardware	  



3  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

CRAY SYSTEM SPECIFICATIONS: 
• Peak performance of 27.1 PF 

•  24.5 GPU + 2.6 CPU 
•  710 TB total system memory 
•  8.8 MW peak power 
• Space 4,352 ft2 (404 m2 ) 
•  200 Cabinets 

Heterogeneous Architectures, 
example ORNL’s “Titan” System 

 
•  18,688 Compute Nodes each with: 

•  16-Core AMD Opteron CPU 
• NVIDIA Tesla “K20x” GPU 
•  32 + 6 GB memory 

•  512 Service and I/O nodes 
• Cray Gemini 3D Torus Interconnect 



4  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Challenges of Increasing Parallelism 

Challenges 
•  Fundamental assumptions of 

applications and system 
software design did not 
anticipate exponential growth 
in parallelism 

•  Mean time between failures of 
components is proportional to 
number of components. 
(Designed FIT rate constant) 

•  Undetected error rates 
increasing assuming they are 
a fixed percentage of  detected 
errors. 

•  Increased danger of wrong 
answers  



5  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Exponential Growth of Parallelism   

◆  Growth of parallelism and Amdal’s 
Law is a leading driver of the 
application-architecture 
performance gap. 

◆  To avoid synchronization 
algorithms are becoming more 
asynchronous and by not 
maintaining numerical associativity 
(among other things) results 
becoming less deterministic  

USA Sequoia  
1.5M cores  
2012  

Graph from 
previous slide  

China Milkyway2  
3.1M cores 2013 



6  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Five Years of Algorithm-Architecture 
Co-Design     (3 projects I’ve led) 

The	  IAA	  Algorithms	  Project	  (ORNL-‐SNL)	  begun	  in	  FY2009	  	  
Focused	  on	  homogeneous	  mul@-‐core	  systems,	  and	  extreme	  
scale	  system	  simula@ons.	  Hierarchical	  programming	  models	  
	  
	  
EASI	  Joint	  Math/CS	  Ins7tute	  begun	  in	  FY2010	  
Focused	  on	  heterogeneous	  systems	  with	  accelerators	  and	  
applica@on	  resilience.	  Hybrid	  programming	  models	  
	  
	  
EASIR	  RX-‐Solvers	  Project	  begun	  in	  FY2013	  	  
Heterogeneous	  systems.	  Communica@on	  reducing	  and	  
resilient	  algorithms.	  Numerical	  Reproducibility	  



7  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Our Co-Design Model 
It all revolves around the science 

Algorithms	  

Architecture	  

Simula7on	  Run7me	  
Science	  

Applica7ons	  

Mul7-‐core	  
Processor	  affinity	  
Memory	  affinity	  
Scheduling	  
Threading	  

Hierarchical	  MPI	  
Resilient	  MPI	  	  
Persistent	  Memory	  
Shared	  memory	  

Extreme	  Scale	  
Million	  node	  systems	  
Detailed	  Node	  level	  

Memory	  hierarchy	  
Future	  designs	  

Interconnect	  
Latency/BW	  effects	  

Mul7-‐core	  Aware	  
Communica7on	  reducing	  

Hybrid	  Node	  Aware,	  Mul7-‐precision	  
Fault	  Tolerant,	  	  Reproducibility	  

Influence	  design	  

Ins@tute	  for	  Advanced	  Architectures	  and	  Algorithms	  



8  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

EASI Project Overview  
Addressing Heterogeneity and Resilience 

Runtime 

Algorithms 

Heterogeneous programming API 
Robust multi-precision algorithms 
Hybrid programming 
Resilient algorithms 
Communication optimal algorithms 
Auto-tuned BLAS (API) 
New parallelization methods 

Architecture     Heterogeneous, multi-core,  extreme-scale 

Deliver codes  
to community  
through: 
ScaLAPACK 
Trilinos 
Open MPI 
MPICH2 
MADNESS 
HOMME Task placement and scheduling  

Memory management 
Architecture-aware MPI 

Krylov 
Poisson 
Helmholtz 
Dense NLA 
BLAS 

HOMME  
MADNESS 
Charon  

Workshops 
Training 
Publications 

Applications 

Research Areas in Institute 

MPI 
Shared-memory 
Processor affinity 
Memory affinity 

Community 
Outreach 

ASCR	  Joint	  Math/CS	  Ins@tutes	  



9  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

EASIR Project Team 
Extreme-scale Algorithms & Solver Resilience  

	  	  	  	  	  	  	  PI:	  Al	  Geist	  (ORNL)	  
Co-‐PIs:	  

Mike	  Heroux	  (SNL)	  
Bill	  Gropp	  (U	  ILL)	  
Jack	  Dongarra	  (UTK)	  
Jim	  Demmel	  (UC	  Berkeley)	  
Clayton	  Webster	  (ORNL) 

Architecture-‐aware	  Algorithms	  for	  Scalable	  Performance	  
and	  Resilience	  on	  Heterogeneous	  Architectures	  

ASCR	  Joint	  Math/CS	  Ins@tutes	  



10  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

 
Extreme-scale Algorithms &  
Solver Resilience    (EASIR) Research Project 
  

Revolutionary methods for 
algorithm resilience 
 
• Ability to survive silent errors   
• Tunable reproducibility 
• Local persistent storage 
• Hierarchical Schwarz 

framework 
 

Communication optimal 
algorithms 
Synchronization reducing 
algorithms 
  
• Latency hiding  
• Minimizing data movement  
• Variable precision arithmetic 
 
 

Advances in Solvers 

Solver algorithms for extreme-scale heterogeneous systems 

Resilient Algorithms 



11  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Develop robust multi-precision algorithms 

Idea Goes Like This… 
•  Exploit single precision floating point as much as possible. 

 (Single precision is faster than double precision because 
§  Higher parallelism within floating point units 

•  4 ops/cycle (usually) instead of 2 ops/cycle 
§  Reduced data motion  

•  32 bit data instead of 64 bit data 
§  Higher locality in cache 

•  More data items in cache 

•  Correct or update the solution with selective use of 64 bit 
floating point to provide a refined results 

•  Intuitively:  
–  Compute a 32 bit result,  
–  Calculate a correction to 32 bit result using selected higher precision 

and, 
–  Perform the update of the 32 bit results with the correction using 

high precision.  



12  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

0 

50 

100 

150 

200 

250 

300 

350 

400 

450 

500 

960 3200 5120 7040 8960 11200 13120 

Matrix size 

G
flo

p/
s 

Tesla C2050, 448 CUDA cores (14 multiprocessors x 32) @ 1.15 GHz., 
 3 GB memory, connected through PCIe to a quad-core Intel @2.5 GHz. 

Single Precision 

Mixed Precision 

Double Precision 

Results for Multi-precision Iterative Refinement for 
Dense Matrix Ax = b 
 



13  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

11,142 25,980 79,275 230,793 602,091

CG
PCG
GMRES
 PGMRES 

Matrix size	


Speedups for mixed precision up to 2X ���
Inner SP/Outer DP (SP/DP) iter. methods vs 
DP/DP	


Highlight: Trilinos Library incorporates Multi- 
Precision Algorithms for Sparse Matrix Solvers 

Trilinos is an object-oriented software framework for the solution of 
large-scale, complex multi-physics engineering and scientific 
problems. The latest release utilizes C++ templates to allow users to 
mix precisions in their solvers. 



14  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

New communication-avoiding orthogonalization 
method developed and added to Trilinos 

Challenge 
Orthogonalization ften dominates iterative solve of Ax=b and Ax=λx 
Existing algorithms (Gram-Schmidt) communicate (move data) too much 
Communication much slower than floating-point arithmetic 

New algorithm 
Tall Skinny QR factorization (TSQR) 
Communicates less & more accurate 

TSQR Implementation 
Inter- and intranode parallelism 
Memory hierarchy optimizations 
Generic on scalar data type 

Performance comparison 
LAPACK QR (DGEQRF) -- sequential only 
Modified Gram-Schmidt (parallel -- Intel TBB) 
TSQR (parallel -- Intel TBB)   
 
 

0.00E+00	  
5.00E-‐02	  
1.00E-‐01	  
1.50E-‐01	  
2.00E-‐01	  
2.50E-‐01	  
3.00E-‐01	  
3.50E-‐01	  

Run	  7me	  in	  seconds	  of	  different	  
methods	  shows	  3X-‐10X	  
improvements	  with	  TSQR	  

Run@me	  (s)	  



15  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Highlight:  
Developed heterogeneous programming API   

• Completed	  a	  portable	  API	  for	  mul@core	  CPUs	  and	  GPUs.	  
• Allows	  wri@ng	  portable	  parallel	  linear	  algebra	  so^ware	  that	  
can	  use	  	  pthreads,	  OpenMP,	  CUDA,	  or	  Intel	  TBB	  (even	  more	  
than	  one	  within	  the	  same	  executable)	  

• API	  is	  extensible	  to	  other	  programming	  models	  as	  needed.	  
• Using	  the	  API,	  we	  demonstrated	  compiling	  and	  running	  the	  
same	  so^ware	  kernel	  using	  pthread,	  Intel	  Threading	  Building	  
Blocks	  and	  CUDA.	  	  	  

• The	  Trilinos	  Tpetra	  and	  Kokkos	  packages	  incorporate	  this	  API	  
in	  Trilinos	  10.0.	  	  	  

• The	  API	  is	  documented	  in	  
http://www.cs.sandia.gov/~maherou/docs/TrilinosNodeAPI.pdf 	  	  
	  

ASCR	  Joint	  Math/CS	  Ins@tutes	  



16  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Developed new High Performance Cholesky 
Factorization for Multicore with GPU nodes 

16 

0 

200 

400 

600 

800 

1000 

1200 

0 5000 10000 15000 20000 25000 

G
flo

p/
s 

Matrix sizes 

Parallel Performance of the hybrid SPOTRF (4 Opteron  and 4 GPU TESLA 
C1060) 

1CPU-1GPU 2CPUs-2GPUs 3CPUs-3GPUs 4CPUs-4GPUs 

More details are available at: http://www.netlib.org/lapack/lawnspdf/lawn223.pdf 

Dense solvers for multicore/GPUs – MAGMA Project 
MAGMA - based on LAPACK and extended for hybrid systems (multi-GPUs + multicore)  



17  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Highlight: New Hybrid Node LU Algorithm 
Impact  Objectives  

§  Develop a scalable, high performance solver that 
outperforms other algorithms on hybrid CPU
+GPU nodes such as those on Titan.  

§  Avoid the need for pivoting by randomly 
permuting the dense matrix  in parallel before 
starting factorization. 

§  New LU algorithm is nearly as fast as 
Cholsky 

§  Plan to distribute in the PLASMA software 
library 

•  By avoiding pivoting the amount of data 
moved is reduced lowering power 
consumption during factorization. 

• Using a parallel randomized butterfly 
transformation  reduces the probability of getting 
a zero pivot to essentially zero. 

• Iterative refinement  used to achieve full 
precision 

§ Paper in TOMS  
  Baboulin, JD, Herman, Tomov, TOMS 2012 
 

Accomplishments 

Contact: Jack Dongarra <dongarra@eecs.utk.edu> 



18  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Highlight – New Resilience Method for 
Soft Errors including Proof of Correctness 

Impact  Objectives  
§  To Create the next generation extreme scale 

algorithms that can produce reliable results, even 
when executed on unreliable hardware 

§  Even in the presence of multiple silent errors, the 
resilient algorithm converges at the same rate as 
the fault free iteration. 

§  Developed a fully resilient fixed-
point iteration that can be used to 
improve a number of existing 
solvers including Jacobi, Gauss-
Seidel, GMRES, etc.  

§  Demonstrated how “selective 
reliability” can be used to control 
the propagation of hardware error 

Accomplishments 

Contact: Clayton Webster <webstercg@ornl.gov> 

Classic iteration encounters 
errors and restarts but fails to 
converge 

The resilient iteration 
is not affected by the 
error and converges 
just as fast as the 
error free iteration. 

R
es

id
ua

l 

Iterations 

§  We provide rigorous mathematical definitions 
of hardware error and convergence, both with 
respect to silent hardware faults 

§  Paper: M. Stoyanov and C. Webster, 
Numerical Analysis in the Presence of 
Hardware Faults: Fixed Point Methods,  SIAM 
Journal of Scientific Computing, 2014 
(Submitted). 



19  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Highlight – Release of Reproducable 
and Resilient Packages 

Release of Reproducable BLAS.  
 
This capability can often  be very 
important in debugging and 
performance tuning.  

Release of a resilient algorithms in 
Scalapack.   
 
The LU, QR, Cholesky, among others, 
algorithms  in this release can survive any 
number of node failures  as long as they 
don't happen more than one at a time.  
 
The overhead for this resilient 
implementation is 3%  
 plus an additional 3% to recover from 
each fault.  

Scaling 
Resilience  

High 
Performance 

Error Bound  the  
Reproducibility 

Debugging  
Correctness 
Silent error 
detection 

Tunable 
Reproducability 



20  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Summary: Co-Design What Has Worked 

Algorithms	  

Architecture	  

Simula7on	  Run7me	  
Science	  

Applica7ons	  

Mul7-‐core	  
Processor	  affinity	  
Memory	  affinity	  
Scheduling	  
Threading	  

Hierarchical	  MPI	  
Resilient	  MPI	  	  
Persistent	  memory	  
Shared	  memory	  

Extreme	  Scale	  
Million	  node	  systems	  
Detailed	  Node	  level	  

Memory	  hierarchy	  
Future	  designs	  

Interconnect	  
Latency/BW	  effects	  

Mul7-‐core	  Aware	  
Communica7on	  reducing	  

Hybrid	  Node	  Aware,	  Mul7-‐precision	  
Fault	  Tolerant,	  	  Reproducibility	  

Small	  Influence	  design	  	  



21  Managed by UT-Battelle 
 for the U.S. Department of Energy ASCAC March 3, 2009 

Thank You 

21  Managed by UT-Battelle 
for the Department of Energy 


