“ s Los Alamos ||l Lawrence Livermore 3¢ OAK @ Sandia -~ STANFORD 4 o

NATIONAL LABORATORY National Laboratory “¥*RIDGE Tl SO N IVERSTTY,
EST.1943 National Laboratory

Non-Traditional Approaches to HPC
Software Development

Presented at SOS 2014
March 19, 2014

Allen McPherson
Los Alamos National Laboratory

Office of

UNCLASSIFIED LA-UR-14-21736 ENERGY oo

Outline

* About ExMatEx and multi-scale applications

Brief discussion of “programming models” and software stacks
DSLs within the ExMatEx project
A service-based ExMatEx software stack

CoHMM multi-scale proxy application: implementations & results

Future work leveraging ExMatEx efforts

AMEXx UNCLASSIFIED LA-UR-14-21736 © ENERGY 7o >

Brief Introduction to ExMatEx

. " DT Eventually
* Multi-scale materials Sl \ Subdomain | lAdaptwe . consistent
Sampler distributec
* Application driven mﬁ"i Ebn : database
« Computer science focused =
* ASCR Co-Design Center ‘ E— Node N/2 |
E==nt) Ada tive
— LANL, LLNL, SNL, ORNL - | el ‘\-w\
— Stanford, Caltech / o \ .
— $4M/yr for 5 yrs OSC'SZT:QSETSQ FoM ’ = ’ eeoe ﬁ

NS 7N ~ NS

» starting third year

* Work in many areas: molecular dynamics, proxies, programming
models, DSLs, multi-scale algorithms, vendor interface, runtimes,
software stacks, etc.

* More info at http://exmatex.org

Office of
Science

UNCLASSIFIED LA-UR-14-21736

ExMatEx application: dynamic and multi-scale

* ExMatEx apps are...
— Multi-scale
— Dynamic
* Multi-scale applications integrate components...
— That dynamically interact with each other on-the-fly
* Components can be...
— Serial (single core)
— Single node

Moving refirl1ement window

RREEN

» Multi-core
» Accelerated (e.g. GPU)
— Multi-node

» Groups of the above

» EXiSting |ibraries |Microscale| | Mesoscale | | Macroscale |

* Additional requirements: fault tolerance, in situ analysis, etc.

Office of

atEX UNCLASSIFIED LA-UR-14-21736 © ENERGY o2

Traditional HPC Software Stack

* Current HPC software stack
— FORTRAN, C, C++, “X” (and libraries)
— MPI
— Static scheduler

* Application writer does everything

— Load balancing, fault tolerance, dynamic communication patterns, dynamic
fask scheduling, data migration, code migration

* More powerful tools can help

* Multiple ways to implement these application cpabilities
— “Monolithic” languages
— System services
* Insulate developers and users with APIs and abstractions

* Polyglot approach—no single uber HPC programming model/language

EEEEEEEEEEEE

AMEXx UNCLASSIFIED LA-UR-14-21736 © ENERGY 3o s

Polyglot Development Environment

{s——) Single-scale components

C, C++ CUDA MPI Trilinos
FORTRAN OpenMP

Multi-scale apps (I

DSLs SLURM Charm++ Go, Erlang
MOAB Chapel Clojure

Full application workflow T

Dynamic Messaging & Temporary
scheduling communication caching

CLUSTERS SYSTEMS

Office of

UNCLASSIFIED LA-UR-14-21736 @ ENERGY oo

Polyglot Development Environment

{s——) Single-scale components

C, C++ CUDA MPI Trilinos
FORTRAN OpenMP

Multi-scale apps —
DSLs SLURM Charm++ Go, Erlang
MOAB Chapel Clojure

Full application workflow T

Dynamic Messaging & Temporary
scheduling communication caching

CLUSTERS SYSTEMS

Office of

UNCLASSIFIED LA-UR-14-21736 © ENERGY o2

Domain Specific Languages

* DSLs can insulate application developers from API complexity

* Small, focused languages for specific, restricted, problem domain
— Potential for productivity, portability, and performance
— Not a new concept: SQL, LaTeX, Unix shell

* We naturally have the required domain-restricted problem space
— At most, a few computational scales with scoped domains
» Molecular dynamics: particles, force kernels, etc.
» Continuum: meshes, calculations on mesh elements (e.g. cells, verticies)
* Our goal is to design and implement DSLs for ExMatEx domains
— Co-design semantics of language with problem domain specialists
— Develop compiler infrastructure that enables those DSLs to interoperate
» Amongst themselves (for required multi-scale computation)
» With external languages to leverage other capabilities (e.g. solvers)
* DSLs applicable beyond ExMatEx (perhaps by broadening semantics)

AMEXx UNCLASSIFIED LA-UR-14-21736 @ ENERGY 2

Example of the Liszt DSL

val Position = FieldWithLabel[Vertex,Float3](“position®)

val Temperature = FieldWithConst[Vertex,Float](0.0f) Mesh Elements
val Flux = FieldWithConst [Vertex,Float](0.0f)

val JacobiStep = FieldWithConst[Vertex,Float](0.0f)

var i = 0;

while (i < 1000) {

for (e <- (mesh)) { Felds
val vl = (e)
val v2 = (e)
val dP = Position(vl) - Position(v2) Parallelizable for

val dT = Temperature(vl) - Temperature(v2)
val step = 1.0f/(length(dP))

Flux(vl) += dT*step

Flux(v2) -= dT*step

JacobiStep(vl) += step

JacobiStep(v2) += step

)
for (p <- (mesh)) {
Temperature(p) += 0.01f*Flux(p)/JacobiStep(p)
}
for (p <- (mesh)) {

Flux(p) = @.f; JacobiStep(p) = 0.f;

U.S. DEPARTMENT OF Office of

UNCLASSIFIED LA-UR-14-21736 ENERGY science

©

Implementation of DSL compiler: Terra

* Stanford University collaboration (Prof. Pat Hanrahan)

* Terra: low-level system programming language for building DSLs
— Enables JIT compiled DSLs
— Enables interoperation with existing applications and libraries

* Designed to interoperate seamlessly with Lua

— Lua is high-level scripting language

— Use Lua to meta-program Terra

— Lua code can generate arbitrary Terra programs at runtime

LULESH

Liszt

Lua/Terra

http://terralang.org/\

Serial

Multi-core

GPU

Cluster Runtime

‘MatEx

UNCLASSIFIED LA-UR-14-21736

EEEEEEEEEEEE Offlce of

NERGY Science 10

Terra status and Y3 DSL efforts

* Terra compiler infrastructure built and released open source
— Using LLVM
— Support for vector instructions
— http.//terralang.org

* Terra compiling test DSLs at reasonable performance
— Matmult, stencils, nbody

* Terra implementation of Liszt underway
— Compiling and generating code for single-core runtime

UNCLASSIFIED LA-UR-14-21736 @ ENERGY =2 1

Evolving the HPC Software Stack

* Recall that developer shouldn’t be required to “do everything”

An ExMatEx software stack—system services provide support
— Node-level work still focused on “X”

Leverage “web” and “cloud” software services

Many of today’s successful startups use diverse software stacks
— Build an application

— Scale to 100’s of millions of users
— Sell your self to Facebook for...
» $1B: Instagram
» $19B: WhatsApp (450M users on Erlang with 10 engineers!)
|dentify gaps and shortcomings in these technologies
— Are there areas where engineering dollars can enable adoption?

* Must carefully manage granularity to absorb overheads

EEEEEEEEEEEE

AMEXx UNCLASSIFIED LA-UR-14-21736 © ENERGY 7

Is performance the only metric?

* How performant are your codes now, really?

* Performance should be one of many goals when developing a code
* Performance can conflict with other goals

— Time to solution

— Code agility

— Code maintainability

— Developer productivity

* Codes must be build to well defined (perhaps evolving) requirements
— Workload & workflow...

— ...drive realistic performance targets
— Agility requirements

— Without requirements it’s difficult to judge success

AMEXx UNCLASSIFIED LA-UR-14-21736 © ENERGY 7 13

Fundamental System Services

* Scheduling
— Spark, Mesos (more “cloudy”)
— CnC, Erlang, etc. (“steal” a service from a “monolithic” language)
* Messaging
— MPI (single component)
— ZeroMQ), RabbitMQ, NSQ
* Caching
— NoSQL databases
» MongoDB, Cassandra, redis, RAMCloud
— Potentially most useful
» Fault tolerance
» Material properties, EOS (service!), etc.
» Avoid redundant computation
» Communication

EEEEEEEEEEEE

AMEXx UNCLASSIFIED LA-UR-14-21736 @ ENERGY o 14

Caveat: Not Advocating “Cloud HPC”

* This is not about fitting HPC into map reduce paradigm
— People are already doing good work in this area
— Map reduce is one computing paradigm built on fundamental services
— Multi-scale HPC codes are just another paradigm on same services

* This is not a cloud data center solution

— This is a bridge too far for our systems infrastructure

— Maybe some day, way down the road
» Virtualization!
» Heterogeneous systems
» |ncremental procurements

— Most of the service software can run in user space
» Least disruptive for systems folks
» Dynamic apps run within a traditional static partition

EEEEEEEEEEEE

Office of

‘ atEX UNCLASSIFIED LA-UR-14-21736 ENERGY Science TS

CoHMM: multi-scale materials proxy app

High strain-rate dynamics,
continuum mechanics
coupled to molecular
dynamics (CoMD proxy)

Heterogeneous Multi-scale
Method with adaptivity

ExMatEx proxy app for
experimentation with service-
based CS approach
(extended by LANL co-
design summer school)

Office of

P ",' U.S. DEPARTMENT OF
'3 ENERGY cience

AMEXx UNCLASSIFIED LA-UR-14-21736

CoHMM: Early Erlang implementation

* Erlang
— Distributed, concurrent, functional language with reliability features built in

» In use for over 20 years building async/concurrent, fault tolerant apps
§ Other languages have similar, but not all, features (Go, Clojure, Scala/AKKA)

— Explore language/runtime/resiliency space
» Launch independent CoMD instances (binary CoMD linked in)

» Message passing from CoMD’s to coarse scale solver
» Fault tolerance through Erlang’s supervisors

@ (Term Shell Edit View Profiles Toolbelt Window Melp 8 &AM O o Gchwgeds Thudos M

comd_43: terminated because {function_clause,[{comd_srv,handle_info,[{#Port<0.796>,{exit_status,
129}},{state,comd_43,"./01dCoMD/CoMD -x 6 -y 6 -z 6",43,0,#Port<0.796>,<0.36.0>}],[{file,"comd_s
rv.erl"},{line,73}]}, {gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,607}]},{proc_lib,in
it_p_do_apply,3,[{file,"proc_lib.erl"},{line,227}1}]}

=ERROR REPORT==== 9-May-2013::16:07:53 ===
** Generic server comd_43 terminating

** Last message in was {#Port<@.796>,{exit_status,129}}
** When Server state == {state,comd_43,"./01dCoMD/CoMD -x 6 -y 6 -z 6",43,0,
#Port<0.796>,<0.36.0>}

** Reason for termination ==
** {function_clause,
[{comd_srv,handle_info,
[{#Port<@.796>, {exit_status,129}},

! atEX UNCLASSIFIED LA-UR- :

CoHMM: Early “Cloud” implementation

* Most “cloudy” of these three proxies

— These technologies usually not seen in

scientific simulation apps

* Apache ZooKeeper

— Distribute computation to pool of nodes
* Node.js

— Launch computations (real CoMD)

— Stateless, run and exit

redis
— NoSQL database

— Used to communicate results
» CoMD stores results
» 1D HMM code reads results
MongoDB

mitchell@centos:~/multiscale-demo

File Edit View Search Terminal Help

Task Completed: '/tasks/complete/t-0000000189' / '1,-1,188,/home/mitchell/multis(~
cale-demo/CoMD/CoMD, -s 1.01"

children = 443, First child = t-0000000188

taskInfo = 1,-1,187,/home/mitchell/multiscale-demo/CoMD/CoMD, -5 1.01

path = /tasks/running/t-0000000188

DEBUG: params var = 1,-1,187,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01
Launching with: >/home/mitchell/multiscale-demo/CoMD/CoMD -s 1.01

Task exited with code: ©

Task Completed: '/tasks/complete/t-0000000086' / '1,-1,54,/home/mitchell/multisc
ale-demo/CoMD/CoMD, -5 1.01"

children = 442, First child = t-0000000085

taskInfo = 1,-1,55,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01

path = /tasks/running/t-0000000085

DEBUG: params var = 1,-1,55,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01
Launching with: >/home/mitchell/multiscale-demo/CoMD/CoMD -5 1.01

Task exited with code: ©

Task Completed: '/tasks/complete/t-0000000188' / '1,-1,187,/home/mitchell/multis
cale-demo/CoMD/CoMD,-s 1.01"

children = 441, First child = t-0000000080

taskInfo = 1,-1,60,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01

Jpath = /tasks/running/t-0000000080

*|DEBUG: params var = 1,-1,60,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01
Iiaunching with: >/home/mitchell/multiscale-demo/CoMD/CoMD -s 1.01 {%

ZooKeeper

Start MD Request /nodeS
w\ Parameters

/pending
/running
/complete
A
Query for State
y’ Compute Nodes
Node.js
Task
Launchers

Results

UNCLASSIFIED LA-UR-14-21736

alEx

=% U.S. DEPARTMENT OF Offlce of 1 8

ENERGY Science

Co-desigh Summer School

* Los Alamos IS&T Co-Design Summer School
— For recruiting and advertising LANL’s co-design work

— Small (6), multi-disciplinary team of students
— 50/50 mix of US/FN

— Work on co-design problem
» 2011 & 2012: LANL CoCoMANS LDRD

» 2013: ExMatEx
— Publish results

» Open source, reports, talks, posters ;‘;;;.,;.;,,.;m; -
» Students @ SC, SIAM, nVidia GTC

— 2013 e ———
» ExMatEx software stack experiments W:

» CoHMM proxy application

Office of

19 Z W0 U.S. DEPARTMENT OF
'3 ENERGY science

UNCLASSIFIED LA-UR-14-21736

19

Summer School: 2013 Students

Robert Pavel University of Delaware

Axel Rivera University of Utah

Venmugil Elango Ohio State

Emmanuel Cieren Laboratoire Bordelais de Recherche en

Informatique
Dominic Roehm Universitat Stuttgart

Bertrand Rouet-Leduc Ecole Normale Supérieure

CS
CS
CS
HPC

Physics

Physics

atEX UNCLASSIFIED LA-UR-14-21736

EEEEEEEEEEEE Offlce of

NERGY Science 20

CoHMM: summer school implementation

Key CS idea: use open source
software for fundamental services:

scheduling, messaging, caching

Acceleration with adaptive task

Kriging DB
Database Kriging

: |
scheduling only where needed

Kriging Failed

Acce I e rati O n by Ca Ch ing HPX Bugs and lack of documentation. Triage it away. Abandoned
previously computed results e BE e e o e

Process

Intel CnC 2D No No No OK
" . Charm++ Synthetic benchmarks only. Evaluate load-balance. Eval. only

Fault tolerance by caching particle s« oo wrwom s copmon o
i i Mesos Evaluated favorably. Installation issues. Eval. only
Swift 1D No No Process CoMD 1.0
positions for scheduling a restart >+ . w e o
. Scala 1D No No No Simple MD
at the node level—computation Cowr i No mulble Process CoMDLi

runs through a failure

Office of

P " U.S. DEPARTMENT OF
"‘ ENERGY Science

i AMFEx UNCLASSIFIED LA-UR-14-21736

CoHMM: summer school lessons learned

* Detailed technical analysis still in preparation...
— 3 papers: 1 accepted, 1 submitted, 1 in endless prep

* Early information and “lessons learned”
— Scale to low-100’s of nodes, low-1000’s of cores
— Testing at 50x50 grid
— CoMDs take on the order of 8-20 seconds, HMM fast
— Under these constraints, overheads are low
» Scheduling of CoMD runs (negligible)

» Read/write performance of in-memory database
§ < 10% for 1000 processes hammering DB)

» Service provided by runtime systems made many, varied
implementations possible in short amount of time (10 weeks)

I AMEXx UNCLASSIFIED LA-UR-14-21736 ©E

EEEEEEEEEEEE

NERGY

Office of
S 22
cience

Future Work

ExMatEx

CoCoMANS

Co-Design
Summer
School

ASC Proxy
Apps

Slide 23

Hhatex

UNCLASSIFIED LA-UR-14-21736

EEEEEEEEEEEE

eeeeee

ExMatEx Contact Information

* http://exmatex.org
— Project web site

— “Research Areas”2>”Runtime Systems” for info related to this talk

» Publications
§ CoHMM and Summer School (1 accepted, 1 in submission, 1 in preparation)

— “News” announcing publication status and proxy release
https://github.com/exmatex
— Project open source site
— CoMD 1.1
* exmatex@lanl.gov
— Project mailing list

— exmatex-leads @lanl.qov if you don’t want to spam entire list
mcpherson@lanl.gov

— For copies of talks and paper, or to discuss this approach

MAlEx UNCLASSIFIED LA-UR-14-21736 @ ENERGY =2 24

