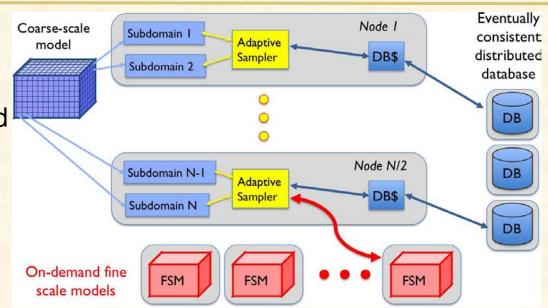


Non-Traditional Approaches to HPC Software Development

UNCLASSIFIED LA-UR-14-21736

Outline

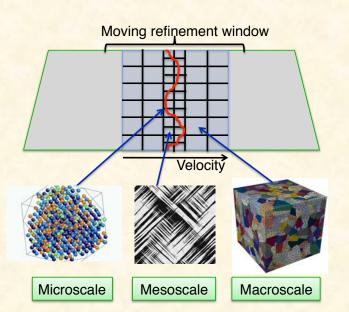

- About ExMatEx and multi-scale applications
- Brief discussion of "programming models" and software stacks
- DSLs within the ExMatEx project
- A service-based ExMatEx software stack
- CoHMM multi-scale proxy application: implementations & results
- Future work leveraging ExMatEx efforts

Brief Introduction to ExMatEx

- Multi-scale materials
- Application driven
- Computer science focused
- ASCR Co-Design Center
 - LANL, LLNL, SNL, ORNL
 - Stanford, Caltech
 - \$4M/yr for 5 yrs
 - » starting third year

- Work in many areas: molecular dynamics, proxies, programming models, DSLs, multi-scale algorithms, vendor interface, runtimes, <u>software stacks</u>, etc.
- More info at <u>http://exmatex.org</u>

3

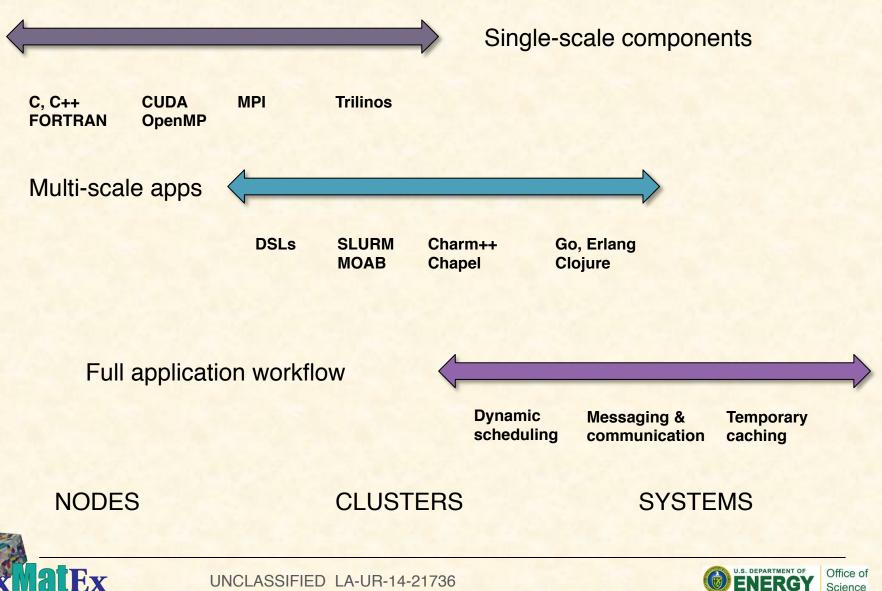

Office of

ExMatEx application: dynamic and multi-scale

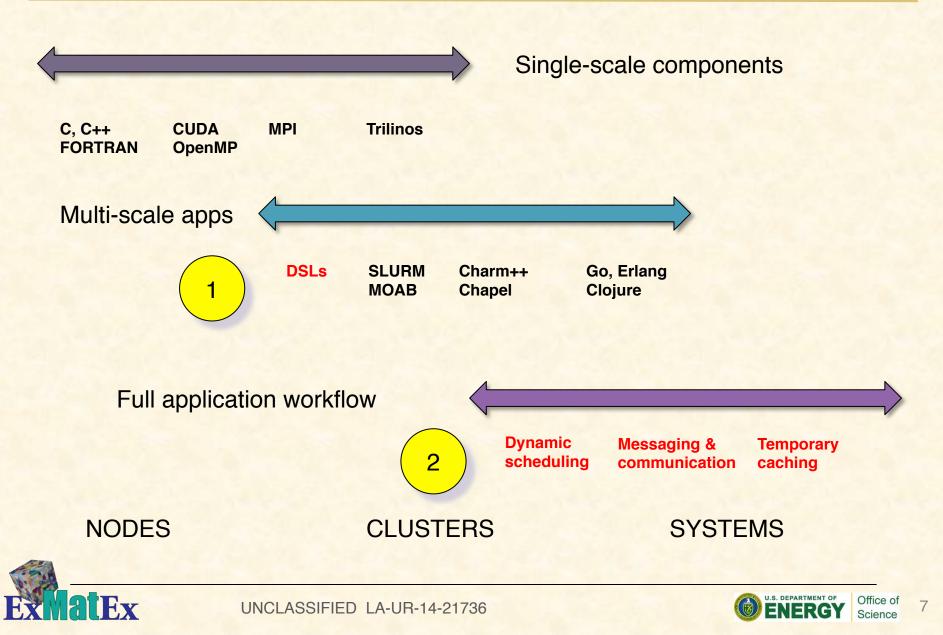
- ExMatEx apps are...
 - Multi-scale
 - Dynamic
- Multi-scale applications integrate components...
 - That dynamically interact with each other on-the-fly
- Components can be...
 - Serial (single core)
 - Single node
 - » Multi-core
 - » Accelerated (e.g. GPU)
 - Multi-node
 - » Groups of the above
 - » Existing libraries
- Additional requirements: fault tolerance, in situ analysis, etc.

UNCLASSIFIED LA-UR-14-21736

Office of


Traditional HPC Software Stack

- Current HPC software stack
 - FORTRAN, C, C++, "X" (and libraries)
 - MPI
 - Static scheduler
- Application writer <u>does everything</u>
 - Load balancing, fault tolerance, dynamic communication patterns, dynamic task scheduling, data migration, code migration
- More powerful tools can help
- Multiple ways to implement these application cpabilities
 - "Monolithic" languages
 - System services
- Insulate developers and users with APIs and abstractions
- Polyglot approach—no single uber HPC programming model/language



Polyglot Development Environment

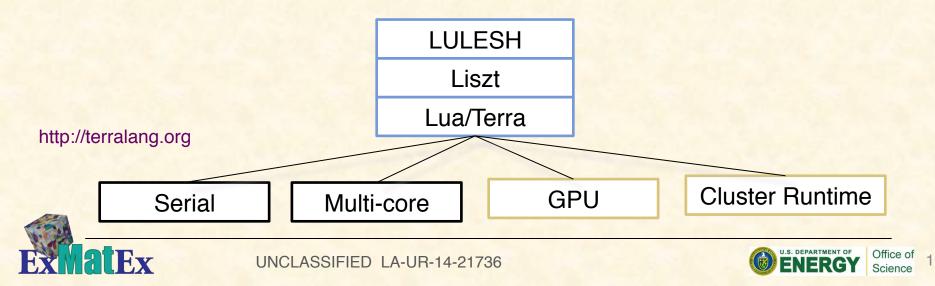
Polyglot Development Environment

Domain Specific Languages

- DSLs can insulate application developers from API complexity
- Small, focused languages for specific, restricted, problem domain
 - Potential for productivity, portability, and performance
 - Not a new concept: SQL, LaTeX, Unix shell
- We naturally have the required domain-restricted problem space
 - At most, a few computational scales with scoped domains
 - » Molecular dynamics: particles, force kernels, etc.
 - » Continuum: meshes, calculations on mesh elements (e.g. cells, verticies)
- Our goal is to design and implement DSLs for ExMatEx domains
 - Co-design semantics of language with problem domain specialists
 - Develop compiler infrastructure that enables those DSLs to interoperate
 - » Amongst themselves (for required multi-scale computation)
 - » With external languages to leverage other capabilities (e.g. solvers)
- DSLs applicable beyond ExMatEx (perhaps by broadening semantics)

Office of

Example of the Liszt DSL


```
val Position = FieldWithLabel[Vertex,Float3]("position")
val Temperature = FieldWithConst[Vertex,Float](0.0f)
                                                                Mesh Elements
val Flux = FieldWithConst [Vertex,Float](0.0f)
val JacobiStep = FieldWithConst[Vertex,Float](0.0f)
                                                               Topology Functions
var i = 0;
while (i < 1000) {
  for (e <- edges(mesh)) {</pre>
                                                                Fields (Data storage)
    val v1 = head(e)
    val v^2 = tail(e)
                                                                Parallelizable for
    val dP = Position(v1) - Position(v2)
    val dT = Temperature(v1) - Temperature(v2)
    val step = 1.0f/(length(dP))
    Flux(v1) += dT*step
    Flux(v2) -= dT^*step
    JacobiStep(v1) += step
    JacobiStep(v2) += step
  }
  for (p <- vertices(mesh)) {</pre>
    Temperature(p) += 0.01f*Flux(p)/JacobiStep(p)
  }
  for (p <- vertices(mesh)) {</pre>
    Flux(p) = 0.f; JacobiStep(p) = 0.f;
  }
  i += 1
```


Office of

Implementation of DSL compiler: Terra

- Stanford University collaboration (Prof. Pat Hanrahan)
- Terra: low-level system programming language for building DSLs
 - Enables JIT compiled DSLs
 - Enables interoperation with existing applications and libraries
- Designed to interoperate seamlessly with Lua
 - Lua is high-level scripting language
 - Use Lua to meta-program Terra
 - Lua code can generate arbitrary Terra programs at runtime

Terra status and Y3 DSL efforts

- Terra compiler infrastructure built and released open source
 - Using LLVM
 - Support for vector instructions
 - http://terralang.org
- Terra compiling test DSLs at reasonable performance
 - Matmult, stencils, nbody
- Terra implementation of Liszt underway
 - Compiling and generating code for single-core runtime

Evolving the HPC Software Stack

- Recall that developer shouldn't be required to "do everything"
- An ExMatEx software stack—system services provide support
 - Node-level work still focused on "X"
- Leverage "web" and "cloud" software services
- Many of today's successful startups use diverse software stacks
 - Build an application
 - Scale to 100's of millions of users
 - Sell your self to Facebook for...
 - » \$1B: Instagram
 - » \$19B: WhatsApp (450M users on Erlang with 10 engineers!)
- Identify gaps and shortcomings in these technologies
 - Are there areas where engineering dollars can enable adoption?
- Must carefully manage granularity to absorb overheads

Is performance the only metric?

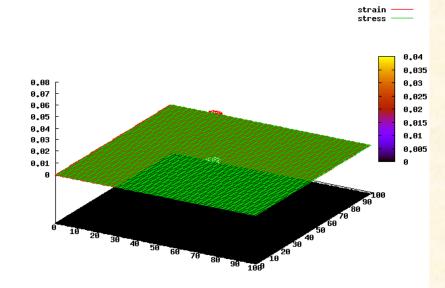
- How performant are your codes now, really?
- Performance should be one of many goals when developing a code
- Performance can conflict with other goals
 - Time to solution
 - Code agility
 - Code maintainability
 - Developer productivity
- Codes must be build to well defined (perhaps evolving) requirements
 - Workload & workflow ...
 - ...drive realistic performance targets
 - Agility requirements
 - Without requirements it's difficult to judge success

Office of

Fundamental System Services

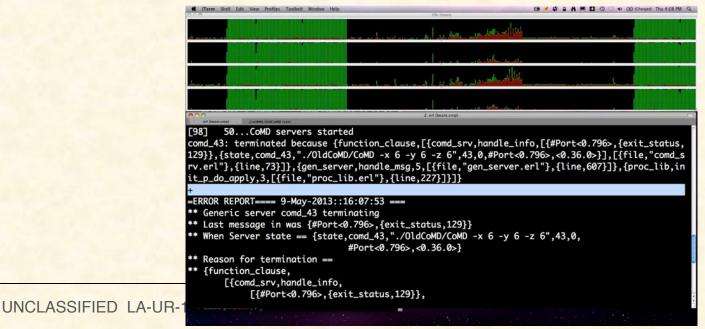
- Scheduling
 - Spark, Mesos (more "cloudy")
 - CnC, Erlang, etc. ("steal" a service from a "monolithic" language)
- Messaging
 - MPI (single component)
 - ZeroMQ, RabbitMQ, NSQ
- Caching
 - NoSQL databases
 - » MongoDB, Cassandra, redis, RAMCloud
 - Potentially most useful
 - » Fault tolerance
 - » Material properties, EOS (service!), etc.
 - » Avoid redundant computation
 - » Communication

Caveat: Not Advocating "Cloud HPC"


- This is <u>not</u> about fitting HPC into map reduce paradigm
 - People are already doing good work in this area
 - Map reduce is one computing paradigm built on fundamental services
 - Multi-scale HPC codes are just another paradigm on same services
- This is <u>not</u> a cloud data center solution
 - This is a bridge too far for our systems infrastructure
 - Maybe some day, way down the road
 - » Virtualization!
 - » Heterogeneous systems
 - » Incremental procurements
 - Most of the service software can run in user space
 - » Least disruptive for systems folks
 - » Dynamic apps run within a traditional static partition

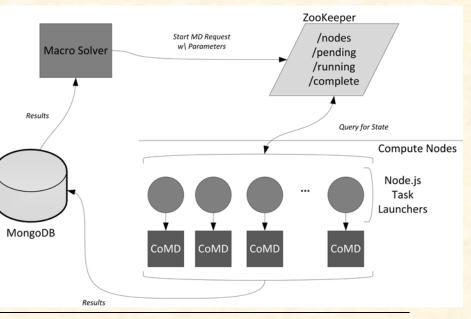
CoHMM: multi-scale materials proxy app

- High strain-rate dynamics, continuum mechanics coupled to molecular dynamics (CoMD proxy)
- Heterogeneous Multi-scale Method with adaptivity
- ExMatEx proxy app for experimentation with servicebased CS approach (extended by LANL codesign summer school)



CoHMM: Early Erlang implementation

- Erlang
 - Distributed, concurrent, functional language with reliability features built in
 - » In use for over 20 years building async/concurrent, fault tolerant apps
 - § Other languages have similar, but not all, features (Go, Clojure, Scala/AKKA)
 - Explore language/runtime/resiliency space
 - » Launch independent CoMD instances (binary CoMD linked in)
 - » Message passing from CoMD's to coarse scale solver
 - » Fault tolerance through Erlang's supervisors



CoHMM: Early "Cloud" implementation

- Most "cloudy" of these three proxies
 - These technologies usually not seen in scientific simulation apps
- Apache ZooKeeper
 - Distribute computation to pool of nodes
- Node.js
 - Launch computations (real CoMD)
 - Stateless, run and exit
- redis
 - NoSQL database
 - Used to communicate results
 - » CoMD stores results
 - » 1D HMM code reads results

E mitchell@centos:~/multiscale-demo _	
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>S</u> earch <u>T</u> erminal <u>H</u> elp	
Task Completed: '/tasks/complete/t-0000000189' / '1,-1,188,/home/mitchell/mul	tis
cale-demo/CoMD/CoMD,-s 1.01	
# children = 443, First child = t-0000000188	
<pre>taskInfo = 1,-1,187,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01</pre>	
path = /tasks/running/t-000000188	
DEBUG: params var = 1,-1,187,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01	
Launching with: >/home/mitchell/multiscale-demo/CoMD/CoMD -s 1.01	
Task exited with code: 0	
Task Completed: '/tasks/complete/t-0000000086' / '1,-1,54,/home/mitchell/mult	isc
ale-demo/CoMD/CoMD,-s 1.01'	
# children = 442, First child = t-000000085	
taskInfo = 1,-1,55,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01	
path = /tasks/running/t-0000000085	
<pre>DEBUG: params var = 1,-1,55,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01</pre>	
Launching with: >/home/mitchell/multiscale-demo/CoMD/CoMD -s 1.01	
Task exited with code: 0	
Task Completed: '/tasks/complete/t-0000000188' / '1,-1,187,/home/mitchell/mul	tis
cale-demo/CoMD/CoMD,-s 1.01'	
# children = 441, First child = t-0000000080	
taskInfo = 1,-1,60,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01	
path = /tasks/running/t-0000000080	
<pre>DEBUG: params var = 1,-1,60,/home/mitchell/multiscale-demo/CoMD/CoMD,-s 1.01</pre>	
Launching with: >/home/mitchell/multiscale-demo/CoMD/CoMD -s 1.01	

Office of

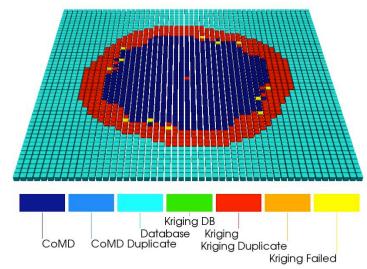
Co-design Summer School

- Los Alamos IS&T Co-Design Summer School
 - For recruiting and advertising LANL's co-design work
 - Small (6), multi-disciplinary team of students
 - 50/50 mix of US/FN
 - Work on co-design problem
 - » 2011 & 2012: LANL CoCoMANS LDRD
 - » 2013: ExMatEx
 - Publish results
 - » Open source, reports, talks, posters
 - » Students @ SC, SIAM, nVidia GTC
 - 2013
 - » ExMatEx software stack experiments
 - » CoHMM proxy application

	- Los Alamos	
Summe Los Alartos 10.47 0	and the second se	
Co-design well in Jac Information in Jaco January 2012 marks the IB level site is published at 2 carriest co-design efforted. I Origin Summer School. T imports. Takks, etc.	Sectors Contact b sites aunoched 100-101 und of multiple Lan Along to delage with alon. The top- code data is a delage with along top delage with along to we a site a resources ago when you can find our papers. new or delage with along =	About our Sponsor The Co-Grego homes based hadrog the statistical generator participation of the construction of the Convergence of the set of the Convergence of the Convergence and the Convergence of the Convergence Assessment in the Convergence of the Assessment in the Convergence of the Convergence Assessment in the Convergence of the Convergence of the Convergence Assessment in the Convergence of the Convergence of the Convergence Assessment in the Convergence of th
Ing Heart Inc Promption on Landon Claring Knoll (T-3), Altern Mich school students will present Perforatory 1751. The tables at Exploration of Key Applica Bert Still ELLIAL) and Altern	Person (CCS-7), and Jeffrey Willert (2011 to-design summar- tailes at GMM PP 2012 in Savannah, Georgia on Finday, e peri of a time part mini-symposium – Phoses for Repid son (Performance II, 8, 6) – organized by Michael Savard (2014).	Summer School Personnel Leadership Alm technesis, CGPF david & Carecentr Roma Land Care Kanit - Care Annow Table - Care Manager School - Care Manager Backware, Children Manager Tables - Care Manager
the Altern McPineton, and Cell The Inaugural 2011 Co-De participanted and produced diudents focusted on a so problem. Their work is do:	time for 2012 Summer School which a wave, the TOP org famme fictor way well access. Bit students a significant amount of work is a host period of time. The in choosy approach is a standy rate function thangood mental of a significant of the off all of their code Matuah. C. wave of the standard of the standard of the standard of the mental of a significant of the off.	Considerations The Generation 11 Provide Lattice CoS-7 Part Miclamon, CoS-7 Boord Parties, CoS-7 Parts and the analysis of the CoS-7 Parts and the Cost Parts Aller Ald Participant and Line Allered Tay Aller Ald Partson and Line Allered Tables

Office of

Summer School: 2013 Students

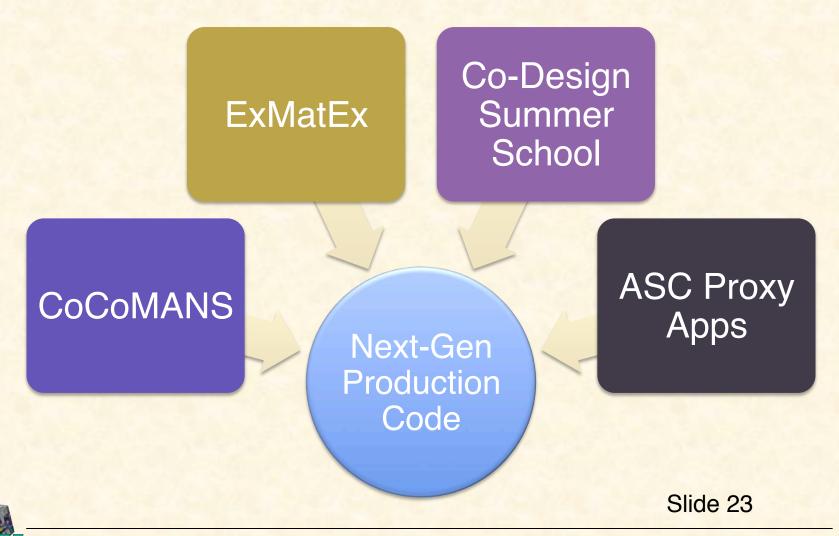

UNCLASSIFIED LA-UR-14-21736

Name	School	Area
Robert Pavel	University of Delaware	CS
Axel Rivera	University of Utah	CS
Venmugil Elango	Ohio State	CS
Emmanuel Cieren	Laboratoire Bordelais de Recherche en Informatique	HPC
Dominic Roehm	Universität Stuttgart	Physics
Bertrand Rouet-Leduc	École Normale Supérieure	Physics

CoHMM: summer school implementation

- Key CS idea: use open source software for fundamental services: scheduling, messaging, caching
- Acceleration with adaptive task scheduling only where needed
- Acceleration by caching previously computed results
- Fault tolerance by caching particle positions for scheduling a restart at the node level—computation runs through a failure

System	Dimension	Adaptive	Database	Fault Tolerant	Status
HPX	Bugs and lac	Abandoned			
Scioto	1D, 2D	AMR, Kriging	redis	No	ОК
Pathos	1D	Yes	No	Process	OK
Intel CnC	2D	No	No	No	ОК
Charm++	Synthetic ber	Eval. only			
Spark	1D, 2D	AMR, Kriging	redis	CoMD atom	ОК
Mesos	Evaluated far	Eval. only			
Swift	1D	No	No	Process	CoMD 1.0
Erlang	1D	No	No	Process	CoMD 1.0
Scala	1D	No	No	No	Simple MD
"Cloud"	1D	No	multiple	Process	CoMD 1.1


CoHMM: summer school lessons learned

- Detailed technical analysis still in preparation...
 - 3 papers: 1 accepted, 1 submitted, 1 in endless prep
- Early information and "lessons learned"
 - Scale to low-100's of nodes, low-1000's of cores
 - Testing at 50x50 grid
 - CoMDs take on the order of 8-20 seconds, HMM fast
 - Under these constraints, overheads are low
 - » Scheduling of CoMD runs (negligible)
 - » Read/write performance of in-memory database
 - § < 10% for 1000 processes hammering DB)
 - » Service provided by runtime systems made many, varied implementations possible in short amount of time (10 weeks)

Future Work

UNCLASSIFIED LA-UR-14-21736

Office of 23

ExMatEx Contact Information

<u>http://exmatex.org</u>

- Project web site
- "Research Areas" \rightarrow "Runtime Systems" for info related to this talk
 - » Publications
 - § CoHMM and Summer School (1 accepted, 1 in submission, 1 in preparation)
- "News" announcing publication status and proxy release
- <u>https://github.com/exmatex</u>
 - Project open source site
 - CoMD 1.1
- <u>exmatex@lanl.gov</u>
 - Project mailing list
 - <u>exmatex-leads@lanl.gov</u> if you don't want to spam entire list
- mcpherson@lanl.gov
 - For copies of talks and paper, or to discuss this approach

