
UNCLASSIFIED LA-UR-14-21736!

Non-Traditional Approaches to HPC
Software Development!

 
Presented at SOS 2014 

March 19, 2014!
Allen McPherson!

Los Alamos National Laboratory!

UNCLASSIFIED LA-UR-14-21736! 2!

•  About ExMatEx and multi-scale applications!
•  Brief discussion of “programming models” and software stacks!
•  DSLs within the ExMatEx project!
•  A service-based ExMatEx software stack!
•  CoHMM multi-scale proxy application: implementations & results!
•  Future work leveraging ExMatEx efforts!

Outline!

UNCLASSIFIED LA-UR-14-21736! 3!

Brief Introduction to ExMatEx
•  Multi-scale materials!
•  Application driven!
•  Computer science focused!
•  ASCR Co-Design Center!

–  LANL, LLNL, SNL, ORNL !
–  Stanford, Caltech!
–  $4M/yr for 5 yrs!

»  starting third year!
•  Work in many areas: molecular dynamics, proxies, programming

models, DSLs, multi-scale algorithms, vendor interface, runtimes,
software stacks, etc.!

•  More info at http://exmatex.org!
!

3	

UNCLASSIFIED LA-UR-14-21736! 4!

ExMatEx application: dynamic and multi-scale!
•  ExMatEx apps are…!

–  Multi-scale!
–  Dynamic!

•  Multi-scale applications integrate components…!
–  That dynamically interact with each other on-the-fly!

•  Components can be…!
–  Serial (single core)!
–  Single node!

»  Multi-core!
»  Accelerated (e.g. GPU)!

–  Multi-node!
»  Groups of the above!
»  Existing libraries!

•  Additional requirements: fault tolerance, in situ analysis, etc.!

Moving refinement window!

Macroscale!

Velocity!

Mesoscale!Microscale!

UNCLASSIFIED LA-UR-14-21736! 5!

•  Current HPC software stack!
–  FORTRAN, C, C++, “X” (and libraries)!
–  MPI!
–  Static scheduler!

•  Application writer does everything!
–  Load balancing, fault tolerance, dynamic communication patterns, dynamic

task scheduling, data migration, code migration!
•  More powerful tools can help!
•  Multiple ways to implement these application cpabilities!

–  “Monolithic” languages!
–  System services!

•  Insulate developers and users with APIs and abstractions!
•  Polyglot approach—no single uber HPC programming model/language!

Traditional HPC Software Stack!

UNCLASSIFIED LA-UR-14-21736! 6!

Polyglot Development Environment!

C, C++!
FORTRAN!

CUDA!
OpenMP!

MPI!

Temporary
caching!

Dynamic
scheduling!

Charm++!
Chapel!

SLURM!
MOAB!

Messaging &
communication!

DSLs!
!

Go, Erlang!
Clojure!

NODES! CLUSTERS! SYSTEMS!

Single-scale components!

Multi-scale apps!

Full application workflow!

Trilinos!

UNCLASSIFIED LA-UR-14-21736! 7!

Polyglot Development Environment!

C, C++!
FORTRAN!

CUDA!
OpenMP!

MPI!

Temporary
caching!

Dynamic
scheduling!

Charm++!
Chapel!

SLURM!
MOAB!

Messaging &
communication!

DSLs!
!

Go, Erlang!
Clojure!

NODES! CLUSTERS! SYSTEMS!

Single-scale components!

Multi-scale apps!

Full application workflow!

Trilinos!

1!

2!

UNCLASSIFIED LA-UR-14-21736! 8!

•  DSLs can insulate application developers from API complexity!
•  Small, focused languages for specific, restricted, problem domain!

–  Potential for productivity, portability, and performance!
–  Not a new concept: SQL, LaTeX, Unix shell!

•  We naturally have the required domain-restricted problem space!
–  At most, a few computational scales with scoped domains!

»  Molecular dynamics: particles, force kernels, etc.!
»  Continuum: meshes, calculations on mesh elements (e.g. cells, verticies)!

•  Our goal is to design and implement DSLs for ExMatEx domains!
–  Co-design semantics of language with problem domain specialists!
–  Develop compiler infrastructure that enables those DSLs to interoperate!

»  Amongst themselves (for required multi-scale computation)!
»  With external languages to leverage other capabilities (e.g. solvers)!

•  DSLs applicable beyond ExMatEx (perhaps by broadening semantics)!

Domain Specific Languages!

UNCLASSIFIED LA-UR-14-21736! 9!

Example of the Liszt DSL!
val	
 Position	
 =	
 FieldWithLabel[Vertex,Float3](“position”)	

val	
 Temperature	
 =	
 FieldWithConst[Vertex,Float](0.0f)	

val	
 Flux	
 =	
 FieldWithConst	
 [Vertex,Float](0.0f)	

val	
 JacobiStep	
 =	
 FieldWithConst[Vertex,Float](0.0f)	

var	
 i	
 =	
 0;	

while	
 (i	
 <	
 1000)	
 {	

	
 	
 for	
 (e	
 <-­‐	
 edges(mesh))	
 {	

	
 	
 	
 	
 val	
 v1	
 =	
 head(e)	

	
 	
 	
 	
 val	
 v2	
 =	
 tail(e)	

	
 	
 	
 	
 val	
 dP	
 =	
 Position(v1)	
 -­‐	
 Position(v2)	

	
 	
 	
 	
 val	
 dT	
 =	
 Temperature(v1)	
 -­‐	
 Temperature(v2)	

	
 	
 	
 	
 val	
 step	
 =	
 1.0f/(length(dP))	

	
 	
 	
 	
 Flux(v1)	
 +=	
 dT*step	

	
 	
 	
 	
 Flux(v2)	
 -­‐=	
 dT*step	

	
 	
 	
 	
 JacobiStep(v1)	
 +=	
 step	

	
 	
 	
 	
 JacobiStep(v2)	
 +=	
 step	

	
 	
 }	
 	

	
 	
 for	
 (p	
 <-­‐	
 vertices(mesh))	
 {	

	
 	
 	
 	
 Temperature(p)	
 +=	
 0.01f*Flux(p)/JacobiStep(p)	

	
 	
 }	

	
 	
 for	
 (p	
 <-­‐	
 vertices(mesh))	
 {	
 	

	
 	
 	
 	
 Flux(p)	
 =	
 0.f;	
 JacobiStep(p)	
 =	
 0.f;	
 	
 	

	
 	
 }	

	
 	
 i	
 +=	
 1	

}	

	

Mesh Elements	

	

Topology Functions	

	

Fields (Data storage)	

	

Parallelizable for	

UNCLASSIFIED LA-UR-14-21736! 10!

•  Stanford University collaboration (Prof. Pat Hanrahan)!
•  Terra: low-level system programming language for building DSLs!

–  Enables JIT compiled DSLs!
–  Enables interoperation with existing applications and libraries!

•  Designed to interoperate seamlessly with Lua!
–  Lua is high-level scripting language!
–  Use Lua to meta-program Terra!
–  Lua code can generate arbitrary Terra programs at runtime!

Implementation of DSL compiler: Terra!

Lua/Terra!
Liszt!

LULESH!

Serial! Multi-core! GPU! Cluster Runtime!

http://terralang.org!

UNCLASSIFIED LA-UR-14-21736! 11!

•  Terra compiler infrastructure built and released open source!
–  Using LLVM!
–  Support for vector instructions!
–  http://terralang.org!

•  Terra compiling test DSLs at reasonable performance!
–  Matmult, stencils, nbody!

•  Terra implementation of Liszt underway!
–  Compiling and generating code for single-core runtime!

Terra status and Y3 DSL efforts!

UNCLASSIFIED LA-UR-14-21736! 12!

•  Recall that developer shouldnʼt be required to “do everything”!
•  An ExMatEx software stack—system services provide support!

–  Node-level work still focused on “X”!
•  Leverage “web” and “cloud” software services!
•  Many of todayʼs successful startups use diverse software stacks!

–  Build an application!
–  Scale to 100ʼs of millions of users!
–  Sell your self to Facebook for…!

»  $1B: Instagram!
»  $19B: WhatsApp (450M users on Erlang with 10 engineers!)!

•  Identify gaps and shortcomings in these technologies!
–  Are there areas where engineering dollars can enable adoption?!

•  Must carefully manage granularity to absorb overheads!

Evolving the HPC Software Stack!

UNCLASSIFIED LA-UR-14-21736! 13!

•  How performant are your codes now, really?!
•  Performance should be one of many goals when developing a code!
•  Performance can conflict with other goals!

–  Time to solution!
–  Code agility!
–  Code maintainability!
–  Developer productivity!

•  Codes must be build to well defined (perhaps evolving) requirements!
–  Workload & workflow…!
–  …drive realistic performance targets!
–  Agility requirements!
–  Without requirements itʼs difficult to judge success!

Is performance the only metric?!

UNCLASSIFIED LA-UR-14-21736! 14!

•  Scheduling!
–  Spark, Mesos (more “cloudy”)!
–  CnC, Erlang, etc. (“steal” a service from a “monolithic” language)!

•  Messaging!
–  MPI (single component)!
–  ZeroMQ, RabbitMQ, NSQ!

•  Caching!
–  NoSQL databases!

»  MongoDB, Cassandra, redis, RAMCloud!
–  Potentially most useful!

»  Fault tolerance!
»  Material properties, EOS (service!), etc.!
»  Avoid redundant computation!
»  Communication!

Fundamental System Services!

UNCLASSIFIED LA-UR-14-21736! 15!

•  This is not about fitting HPC into map reduce paradigm!
–  People are already doing good work in this area!
–  Map reduce is one computing paradigm built on fundamental services!
–  Multi-scale HPC codes are just another paradigm on same services!

•  This is not a cloud data center solution!
–  This is a bridge too far for our systems infrastructure!
–  Maybe some day, way down the road!

»  Virtualization!!
»  Heterogeneous systems!
»  Incremental procurements!

–  Most of the service software can run in user space!
»  Least disruptive for systems folks!
»  Dynamic apps run within a traditional static partition!

Caveat: Not Advocating “Cloud HPC”!

UNCLASSIFIED LA-UR-14-21736!

CoHMM: multi-scale materials proxy app!

  High strain-rate dynamics,
continuum mechanics
coupled to molecular
dynamics (CoMD proxy)

  Heterogeneous Multi-scale
Method with adaptivity

  ExMatEx proxy app for
experimentation with service-
based CS approach
(extended by LANL co-
design summer school)

UNCLASSIFIED LA-UR-14-21736! 17!

•  Erlang!
–  Distributed, concurrent, functional language with reliability features built in!

»  In use for over 20 years building async/concurrent, fault tolerant apps!
§  Other languages have similar, but not all, features (Go, Clojure, Scala/AKKA)!

–  Explore language/runtime/resiliency space!
»  Launch independent CoMD instances (binary CoMD linked in)!
»  Message passing from CoMDʼs to coarse scale solver!
»  Fault tolerance through Erlangʼs supervisors !

CoHMM: Early Erlang implementation!

UNCLASSIFIED LA-UR-14-21736! 18!

•  Most “cloudy” of these three proxies!
–  These technologies usually not seen in

scientific simulation apps!
•  Apache ZooKeeper!

–  Distribute computation to pool of nodes!
•  Node.js!

–  Launch computations (real CoMD)!
–  Stateless, run and exit!

•  redis!
–  NoSQL database!
–  Used to communicate results!

»  CoMD stores results!
»  1D HMM code reads results!

CoHMM: Early “Cloud” implementation!

UNCLASSIFIED LA-UR-14-21736! 19!

Co-design Summer School
•  Los Alamos IS&T Co-Design Summer School

–  For recruiting and advertising LANL’s co-design work
–  Small (6), multi-disciplinary team of students
–  50/50 mix of US/FN
–  Work on co-design problem

»  2011 & 2012: LANL CoCoMANS LDRD
»  2013: ExMatEx

–  Publish results
»  Open source, reports, talks, posters
»  Students @ SC, SIAM, nVidia GTC

–  2013
»  ExMatEx software stack experiments
»  CoHMM proxy application

19	

UNCLASSIFIED LA-UR-14-21736! 20!

Name! School! Area!
Robert Pavel! University of Delaware! CS!
Axel Rivera! University of Utah! CS!
Venmugil Elango! Ohio State! CS!
Emmanuel Cieren! Laboratoire Bordelais de Recherche en

Informatique!
HPC!

Dominic Roehm! Universität Stuttgart! Physics!
Bertrand Rouet-Leduc! École Normale Supérieure! Physics!

Summer School: 2013 Students!

UNCLASSIFIED LA-UR-14-21736!

CoHMM: summer school implementation!

  Key CS idea: use open source
software for fundamental services:
scheduling, messaging, caching

  Acceleration with adaptive task
scheduling only where needed

  Acceleration by caching
previously computed results

  Fault tolerance by caching particle
positions for scheduling a restart
at the node level—computation
runs through a failure

UNCLASSIFIED LA-UR-14-21736! 22!

•  Detailed technical analysis still in preparation…!
–  3 papers: 1 accepted, 1 submitted, 1 in endless prep!

•  Early information and “lessons learned”!
–  Scale to low-100ʼs of nodes, low-1000ʼs of cores!
–  Testing at 50x50 grid!
–  CoMDs take on the order of 8-20 seconds, HMM fast!
–  Under these constraints, overheads are low!

»  Scheduling of CoMD runs (negligible)!
»  Read/write performance of in-memory database!

§  < 10% for 1000 processes hammering DB)!

»  Service provided by runtime systems made many, varied
implementations possible in short amount of time (10 weeks)!

CoHMM: summer school lessons learned!

UNCLASSIFIED LA-UR-14-21736! 23!

Next-Gen
Production

Code!

CoCoMANS!

ExMatEx!
Co-Design
Summer
School!

ASC Proxy
Apps!

Future Work!

Slide 23!

UNCLASSIFIED LA-UR-14-21736! 24!

•  http://exmatex.org!
–  Project web site!
–  “Research Areas”à”Runtime Systems” for info related to this talk!

»  Publications!
§  CoHMM and Summer School (1 accepted, 1 in submission, 1 in preparation)!

–  “News” announcing publication status and proxy release!
•  https://github.com/exmatex!

–  Project open source site!
–  CoMD 1.1!

•  exmatex@lanl.gov!
–  Project mailing list!
–  exmatex-leads@lanl.gov if you donʼt want to spam entire list!

•  mcpherson@lanl.gov!
–  For copies of talks and paper, or to discuss this approach!

ExMatEx Contact Information!

