Exceptional service in the national interest

Sandia Advanced Architecture R&D: Simulation & Testbeds

Arun Rodrigues, Dylan Stark, Simon Hammond, Jim Laros

Advanced Architecture R&D

- Reduce impact on labs' mission in a rapidly changing technology environment.
 - Significant PRODUCTION code rewrite or modification may be required
 - Ensure that when we make "the change" it is the right move for code longevity, porting efforts, performance etc.
- CoDesign needs a meeting point between applications and architectures

Testbeds

Advanced Architecture Test Beds

- Current state of technology REQUIRES exploratory R&D of:
 - Alternative Programming Models
 - Architecture-aware algorithms
 - Advanced memory sub-system development
 - Energy Efficient Hardware, Runtime, Systems Software, <u>AND APPLICATIONS</u>
- Current areas of experimentation include:
 - Mantevo Proxy Application suite
 - http://mantevo.org
 - Validation of SST Architecture Simulator
 - http://SST-simulator.org
 - Portals
 - http://code.google.com/p/portals4
 - Kitten Light Weight Kernel
 - https://software.sandia.gov/trac/kitten
 - Power Research
 - Measurement and Control
 - Sandia Power API
 - Application and runtime power impacts
- ~200 Users

A Closer Look

Hostname	Compton	Curie	Shannon	Teller	Volta	Morgan
CPU	Dual Socket Intel E5-2670 (Sandy Bridge)	Interlagos	Sandy Bridge	AMD A10-5800K (Piledriver) 3.8GHz Quad- core	Intel Xeon E5-2695 V2 dual socket (Ivy Bridge) total 24 cores 2.4 GHz	Intel Xeon E5-2695 V2 dual socket (Ivy Bridge) total 24 cores 2.4 GHz
Accelerator	Pre- Production Intel Xeon Phi Knights Corner (KNC)	Nvidia Kepler K20X	Nvidia Kepler K20X and K40X	Radeon Northern Islands (on die integration)	None	Intel Phi (KNC C0) Nvidia K40X
GPU cores	57 - 1.1GHz	2688	2688	384 @ 800MHz	N/A	57 @ 1.1GHz
Nodes	42	52	32	104	56	4
Interconn ect	Mellanox	Gemini	Mellanox	QLogic	Aries	Mellanox QDR IB
Other	80GB SSD per node	Full featured RAS sys	Full PCI Gen 3 NVIDIA GPU Direct	Integrated CPU/GPU+ 256GB SSD/ node	Full featured RAS system including power monitoring and control capabilities	SRN

Use: Mantevo/Mini-App Overview

- Micron Advanced Technology
- 1 HMC Memory Cube + 4 FPGAs
- HMC supplies massive bandwidth (160 GB/s), parallelism
- Requires 4 high-speed links to drive it
- Demonstrated ~10x GUPS performance vs. DDR DIMMs
- Exploring other memory access patterns

Simulation & & eXtreme scale Grand Challenge

XGC Goal:Unified Architecture

Continued focus on:
Data Movement
Concurrency Management

Develop key system architecture concepts that will enable a unified physics/data analytics computing platform or determine what gaps prevent it

Extreme-scale computing will be a key capability in meeting Sandia's national security missions. Understanding where application requirements for our two mission areas overlap will drive development of a set of common components to efficiently support both areas.

Project Forward; Place a Stake; Explore

SST Simulation Project Overview

Goals

- Become the standard architectural simulation framework for HPC
- Be able to evaluate future systems on DOE/DOD workloads
- Use supercomputers to design supercomputers

Technical Approach

- Parallel
 - Parallel Discrete Event core with conservative optimization over MPI
- Multiscale
 - Detailed and simple models for processor, network, and memory
- Interoperability
 - •gem5, DRAMSim, cache models
 - •routers, NICs, schedulers, GPGPU
- Open
 - Open Core, non viral, modular

Status

- Parallel Core, basic components
- Current Release (3.1)
 - Improved set of components
 - Improved portability

Consortium

Combine Lab, academic, & industry

SST Capabilities

S S

Merlin

- Processor & Memory Simulations
 - -Extensive cache models
 - Snoopy and Directory-based coherency models
 - Multiple pre-fetcher models
 - -Multiple Drivers
 - Execution driven (gem5, pintool, qsim)
 - Trace driven (ariel, oberon)
 - -Accurate Memory Simulators
 - •DRAMSim, VaultSim, HybridSim
- Network Simulations
 - -High-performance network topologies
 - •N-dim Torus, Fat-tree, Dragonfly, etc.
 - -Multi-scale
 - Network-on-chip
 - •100K+ nodes
 - -Multiple Drivers
 - Traces
 - State-machines
 - Pattern-based stochastic

Zodiac

Traces

Oberon

High-Level

Models

Hades | Firefly

Messaging Byte Transfer

Explorations

Two-Level Memory Memory

Stacked Memory

Bandwidth & Topology

Point Design

Memory Stack

Add in dep Sandia National Laboratories

- Dimensions
 - Starting Point: 64vaults, double bw/vault
 1.28TB/sec (x4 gen3 cube)
 - Bandwidth: internal, external, photonics.
 At least factor of 2 in each direction
 - Other: Flow control, impact on cache hierarchy
 - Topology: chains, rings
- Methodology
 - Cycle-level simulation (gem5/SST)
 - Why: Subtle interactions of proc/mem not conducive to tracing, does not require multi-node

gem5 -> MemHierarchy

Multi-Level Memory

- Perhaps the most worrying HW development coming at us
- Dimensions
 - Ratio (capacity, speed)
 - Topology: separate channel, from cubes
 - Type: DRAM or NVRAM
- Priority: High
- Methodology
 - Instruction tracing & analysis with SST (mem hierarchy, Ariel Tracing)
 - Examining Sorting Algorithm
- Status
 - Benchmarks running, currently debugging
 - Finding: 2-level is difficult ('hidden' allocations)

Preliminary Study

- Task-parallel miniGhost:
 - 3-D computational domain is single contiguous allocation
 - Computation is 2-D 5-point stencil
 - Not an interesting task-parallel application: regular, balanced, ...
- Originally designed to study halo exchange
 - Task-parallel version for working
- Preliminary data
 - Platform: quad-socket, 8-cores per socket
 - Qthreads:
 - Multiple workers-per-queue, work-stealing
 - One queue per NUMA regions
 - Variables:
 - Level of decomposition (number of xy-slices)
 - Socket utilization (active cores per socket)
 - Allocation and spawning strategies

Allocation and Spawning Strategies

- Early results show small, but noticeable differences
- Differences would be larger with greater difference between memory bandwidths, greater rewriting

Multi-level Memory Simulations

- Future: Rewrite Apps, simulate w/ SST
 - Explore scratchpads
 - Explore on-package
 - Explore NVRAM
- Required components
 - Multiple levels
 - Accurate DRAM, NVRAM
 - DMA Engines
 - Cache Coherency

Functions-in-memory

Sandia National Laboratories

- Design Space
 - In-memory processing: #, capability of cores
 - Full 'core' or limited functions?
 - Locality: Ignore, NUMA, App. Hinting
 - Coherency Options: Directory-based, snoop filtering
- Methodology
 - Execution-based simulation, gem5+memHierarchy
 - Modified Qthreads, application "hinting"
 - Provides timing estimates, captures proc/ mem feedback

gem5 -> MemHierarchy

Processing-in-memory Questions

- •What functions?
 - -For XGC: Assume general purpose processing
 - -In general: vectors? data movement engines? other?
- Major Questions
 - -Architecture Design Space
 - -How many processors? How big?
 - -Coherency models
 - -How do we layout data
 - Interleaving vs. locality
 - •Placement commands?
 - -How do we place / start tasks?

PIM Baseline system

- "Target System"
- •CPU: 32 Heavy Cores
- •PIMS: 4 chains of 8
 - cubes
- Each cube has 8 light weight cores

- "Simulated System"
- CPU: 8 Heavy Cores
- •PIMS: 1 chains of 4cubes
- Each cube has 8 light weight cores

Memory
Cube
8
Lightweight
Cores

PIM Simulation Setup

- Use existing memHierarchy cache protocols
- Naive setup
 - •Treats PIMs as NUMA sockets
 - Simple topology
- •Explore...
 - Task placement
 - Data placement
 - Architecture Space

Summary

- Architecture & Apps radically changing
- Need testbeds to explore near-term architectures & programming models before they enter production
- Need simulation to explore radical architecture changes
- Infrastructure (testbeds, emulators, simulators) is major undertaking
- But, we are doomed without it

Questions

Point Design Process

Goals

- Demonstrate the Point Design is better than the projected state-ofthe art
- Explore design space around the Point Design to determine if a unified architecture for DS&A and NW is feasible
- Keep design space exploration tractable

Process

- Compare against conventional projections
- Explore individual axes of the design space (e.g. memory hierarchy, functions-in-memory)

Design Space Exploration

Task Placement

- Starting point: Ignore it
- Extend NUMA aware placement
 - sst needs to communicate libnuma-like info
 - Currently: looks at shared levels of hierarchy, does not use distances/lenghts
 - levels of hierarchy can be tagged in input file, env variable says where to place task queueus
 - Research question: what information can we add to improve shepherd placement?
- User directed
 - -How does the user specify "this task goes with this data"

Data Placement

- Can reuse system map for task placement for data placement. i.e. Qthreads doing applications
- gem5 currently does simple linear allocation
- Special malloc call: malloc to stack X

 mallocAt()
- System emulation: need free-list-based allocator so we can add allocation from multiple ranges (i.e. stacks)

Point Design

- Node
 - Cores, NIC both on-chip
 - Cores connected to NIC through coherent interface
 - Off-chip stacked memory
 - Functions in memory
- Memory
 - "Cubes": DRAM + Logic Layer
 - Flat Memory Space

SST Recent Enhancements

SIT

DC

Snoop Bus

Core

Core

Snoop Bus

Core

- Improved interoperability with gem5
- •memHierarchy allows more flexible memory hierarchies,

NoC, off-chip, multi-level memories

- Improved programmability
 - -Qthreads, OpenMP support
 - -Many more applications can run in simulator now
- New / Emerging Models
 - –QSim (high speed emulator)
 - –VaultSim stacked DRAM
 - -High-level models (trace, state machine)
 - -Chisel, SystemC interoperability
 - **–NVRAM / DRAM Hybrids**
- Improved SW Engineering (docs, usability, portability)
- New python-based configuration

Core

