Sandia
Exceptional service in the national interest @ National

Laboratories

Portals as a Case Study for Holistic Comprehensive
Integrated Software/Hardware Co-Design

Ron Brightwell, Technical Manager
Scalable System Software Department

g %‘ U.S. DEPARTMENT OF ///A ' 'DQ,’SI
- EN ERGY)/} VA'M Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
‘National Nuclear Security Administration Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

©

&

Portals Interconnect Programming Interface

= Developed by Sandia, U. New Mexico, Intel
* Previous generations of Portals deployed on several production massively
parallel systems
= 1993: 1800-node Intel Paragon (SUNMOS)
= 1997: 10,000-node Intel ASCI Red (Puma/Cougar)
= 1999: 1800-node Cplant cluster (Linux)
= 2005: 10,000-node Cray Sandia Red Storm (Catamount)
= 2009: 18,688-node Cray XT5 — ORNL Jaguar (Linux)

= Focused on providing
= Lightweight “connectionless” model for massively parallel systems
= Low latency, high bandwidth
* |ndependent progress
= Qverlap of computation and communication
= Scalable buffering semantics

= Protocol building blocks to support higher-level application protocols and libraries
and system services

Basic Assumptions

= Asingle low-level APl is needed
= Compute node OS doesn’t have TCP/IP stack
= Compute node application should own all network resources

= Applications will use multiple protocols simultaneously
= Can’t focus on just MPI
= Runtime system, system call forwarding, 1/O protocols too

= Need to support communication between unrelated
processes

= Client/server communication between application processes and
system services

= Need to support general-purpose interconnect capabilities

= Can’t assume special collective network hardware

" |nterconnect hardware limitations can’t be fixed in software

What Makes Portals Different?

= One-sided communication with optional matching

= Provides elementary building blocks for supporting higher-level protocols
well

= Allows key data structures to be placed where optimal for hardware

= User-space, kernel-space, or NIC-space

= Allows for zero-copy and OS-bypass implementations

= Scalable buffering of MPIl unexpected messages

= Supports multiple upper-level protocols (ULPs) within a process
= Run-time system independent
= Well-defined failure semantics

Portals is Not Primarily a Portability Layer

Open MPI v1.3

PML

BTL

BML

OpeniB ™
BTL BTL
n 18
e IZEL_

i

Porting MPICH2 over Nemesis

Devices

Channels

.................................. MP] interfage e
................................. ADI3 interface e

Goals

« Provide a common low-level scalable,

robust, portable, simple and
performance driven communication API
for multiple parallel programming
models over modern network interfaces

Increasing code reusability and
reducing development effort

Include performance/power
measurement capabilities in a central
location

o GASNet Design Overview:
System Architecture

« Two-Level architecture is mechanism for portability

+ GASNet Core API com el ne seen

- Most basic required primitives, narrow and general
- Implemented directly on each network
- Based on Active Messages lightweight RPC paradigm

* GASNet Extended API

— Wider interface that includes higher-level operations

MPICH2 — puts and gets w/ flexible sync, split-phase barriers, collective operations, etc
— Have reference implementation of the extended API in terms of the core API
— Directly implement selected subset of interface for performance
— leverage hardware support for higher-level operations
IBM System Technology Group IBM

Parallel Active Message Interface

| DMADevice | Collective Device | GiDevice | Shmem Device |

Message Layer Core (C++)

Design Philosophy — Don’t Constrain

= Connectionless
= Easy to do connections over connectionless
= |Impossible to do vice-versa

= One-sided
= Easy to do two-sided over one-sided
= Hard to do vice-versa
= Matching
= Needed to enable flexible independent progress
= Otherwise matching and progress must be done above

= Offload
= Straightforward to onload API designed for offload
= Hard to do vice-versa (see TOE)

= Progress
= Must be implicit

Building Blocks Approach

= Define basic objects and operations that can be combined to
simultaneously support multiple upper-layer protocols (ULPs)

= Alternative approach is to define functions
= Both approaches attempt to meet the semantics of the ULP as well as

possible

= Pros
= Supports a wider variety of upper-level protocols
= Encapsulates important structures and functions

= Enables specific hardware optimization opportunities

= Cons
= More difficult to optimize for a single ULP

= (Can create interesting corner cases when combining objects and

functions
= Potential performance penalty for composability

= Exposes implementation details

ULPs Supported

= Application services
= MPI-1, MPI-2, MPI-3 (send/recv, collective, one-sided)
= MPICH, MPI/Pro, ChaMPlon/Pro, MPICH2, OpenMPI
= PGAS
* Cray SHMEM, OpenSHMEM, GASNet, ARMCI
= MultiProcessor Computing (MPC)
= CCI

= OS/Runtime services

= Parallel job launch
* Yod

= Fjle system and |/O
* Fyod, Lustre

System calls
= Remote procedure calls

= |p

Qthreads runtime

Onload Versus Offload

= Why design a custom NIC for offload?
= Just dedicate a core

= A 3 GHz Xeon will outperform a 500 MHz embedded processor on
network protocol processing

= A custom ASIC is even more expensive

= Cost will go down as core count increases

|

Cray Core Specialization

= Dedicate “OS” cores to handle MPI progress
= MPI progress threads run on a dedicated set of cores

PROCEEDINGS OF THE CRAY USER GAOUP, 2012

Leveraging the Cray Linux Environment Core
Specialization Feature to Realize MPI
Asynchronous Progress on Cray XE Systems

Howard Pritchard, Duncan Roweth, David Henseler, and Paul Cassella

difterentisted use of the compute cores availabie on Cray XE compute nodes. Witn CoreSpec, most cores on & node
are dedicated to running the paraliel appiication while ane or more cores are reserved for O and service threads.
The MPICH2 MPI impiementation has been ennanced to make use of tis CoreSpec feature to betier support MPI
independent progress. In this paper, we describe how the MPI impementation uses CoreSpec along with hardware
features of the XE Gemini Network Interface to obtain overiap of MPI communication with computation for micto-

benchmarks and applcations.

Index Terms—MPI, CLE, core speciaization, asynchronous progress

1 INTRODUCTION

The i of pping P

with communication and independent progress
in Message Passing (MPI) applications is well
known (see, for example [5], [9], [15]), even if in
practice, many MPI applications are not struc-
tured to take advantage of such capabilities.
Many different approaches have been taken
since MPI was first standardized to provide
for this capability, including hardware-based
approaches in which the network adapter itself
handles much of the MPI protocol [3], hy-
brid approaches in which the network adapter
and network adapter device driver together
offload the MPI protocol from the applica-
tion [4], host software-based approaches to
assist RDMA-~capable, but MPI-unaware, net-
work adapters [10], [18], as well as more gener-

o The authors are with Cray, Inc.
E-mail: howrdp droweth dah cassella@eray.cons

This materil s based spon work supported by the Defense Advanced
Research Projects Agency wnder its Agreement No. HROU1-07-9-
0001, Any opinions, findings and conclusions or recommendations
expressed in. this materal are those of the author(s) and do rot
necessarily refict the views of the Defense Advancad Research

This work was supprted in part by the Office
o tific Computing Research, Offce of Science, LLS.
Department of Energy, under Contract DE-ACI2-06CHT1357.

alized host software-based approaches which
take advantage of modern multi-core proces-
sors [11], [19].

The Cray XE Gemini RDMA-capable net-
work adapter has features intended to assist in
the implementation of effective host software-
based approaches for providing independent
progression of MPI and for allowing for over-
lap of communication with computation. To
provide for more effective implementation of
such host software-based approaches, Cray
has also enhanced the Cray Linux Environ-
ment (CLE) Core Specialization feature to facil-
itate management of host processor resources
needed for this approach. This paper describes
the combination of Gemini hardware features,
the CLE Core Specialization feature, and en-
hancements made to MPICH? to realize this
capability.

"The rest of this paper is organized as follows.
First, an overview of the Core Specialization
feature is presented. Features of the Gemini
network adapter that are significant for this
work are described in Section 3. Section 4
describes the approach Cray has taken with
the MPICH2 implementation of MPI to realize
better support for independent progress and
communication/computation overlap. In sec-

S3D Time Step Summary

Application
Threads

Progression
disabled

Progression
enabled

14 4.77

3.93

15 4.68

4.05

16 4.59

4.06

MILC Run Time Summary(secs)

Run Type

4096
ranks

8192
ranks

No progression

2165

1168

Progression (phase 1)

2121

1072

Progression (phase 2)

3782

2138

Progression (phase 1)
no reserved cores

3560

2210

Progression (phase 1)
reserve core but no
corespec

2930

2070

Onload Versus Offload Evaluation

= Tests conducted on the Sandia Teller testbed
= 3.8 GHz AMD Piledriver quad-core processors

= Powerlnsight measurement boards

= Onload NIC
= Qlogic InfiniBand HCAs

= Offload NIC
= Mellanox InfiniBand HCAs

= Performance results using Netpipe-3.7.1

11

Offload Streaming Bandwidth Results

25000 100

20000 | . LiaeeeeeesmseessenteossmstinesintiTIIIIII 7, 90

/2
10000 £27 7T T)

—

Bandwidth (Mbps)

. \.\

: ".\"\\
~
o
Power (W)

5000

60

50
L ¥ B 0 Py 6, Ty %S, 2 T & 7y Gy O, Ty Pa S, 7
6‘979@%{34‘4‘4-'1-6,‘1_@4_%_9@1_6/%
Message Size (bytes)

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power == == 2.9 GHz power - - - -
1.9 GHz power == == 3.4 GHz power - - - -
2.4 GHz power - - - - 3.8 GHz power - - - -

Onload Streaming Bandwidth Results

25000 140
130

20000 e mmmmmmmmme o

110
15000

100

90

AN

Power (W)

10000

~ 80

Bandwidth (Mbps)

N YOS

R

- /7 R [
S000 =AY T T
T O S O IO I O > T 60

. 50
T 0% YL HFH G '1"7‘ 4—6}1—‘?7-%

Message Size (bytes)

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power == =— 2.9 GHz power = ==
1.9 GHz power = = = 3.4 GHz power = = =
2.4 GHz power = = = 3.8 GHz power = = =

13

Portals Triggered Operations

= Lightweight events are counters of various network
transactions

= One counter can be attached to multiple different operations or
even types of operations

= Fine grained control of what you count is provided
= Portals operation is “triggered” when a counter reaches
a threshold specified in the operations

= Various types of operations can be triggered
= Triggered counter update allows chaining of local operations

14

Motivation

Collectives are important to a broad array of applications

= As node counts grow, it becomes hard to keep collective time
low

Offload provides a mechanism to reduce collective time
= Eliminates portion of Host-to-NIC latency from the critical path
= Relatively complex collective algorithms are constantly refined

and tuned

Building blocks provide a better approach

= Allow algorithm research and implementation to occur on the
host

* Provides a simple set of hardware mechanisms to implement
A general purpose APl is needed to express the building
blocks

15

Generality of Triggered Operations

* Numerous collectives have been implemented so far
= Allreduce
= Bcast

= Barrier

* Numerous algorithms have been implemented for multiple
collectives
= Binary tree
= k-nomial tree

= Pipelined broadcast
= Dissemination barrier
= Recursive doubling

16

Simulation Methodology

e Utilized SST simulator developed at Sandia
* Modeled processor and NIC as separate state machines

= Fixed delays between states to model delays and overhead

= Single state machine for processor, multiple for NIC to model
concurrent hardware blocks

* Modeled several combinations of parameters defined by
latency and message rate

= Allocated delay to various units that were modeled

High-Level NIC Architecture

200ns / 20% _300ns/30% | .
______________ ’
From
Network
1
1
1
_____ Match/Event 1 FIFO Portals Cmds
Offload 1S 300ns/30%| O
' 3
! by
1]
,,,,,,,,,,,, 1 pe
1 (]
““““““““““““ 1 2
:SOOns / 30%
1
1
 e————Fro ™ o 500ms /50% | o

Simulation Settings

(a) simulation parameters

Property Range
Msg Latency 500 ns, 1000 ns, 1500 ns
Msg Rate 5 Mmsgs/s, 10 Mmsgs/s
Overhead W
NIC Msg Rate 62.5 Mmsgs/s
Rtr Latency S0 ns
Setup Time 200 ns
Cache Line 64 Bytes
Miss Latency 100 ns
Noise 250 ns @ 100KHz, 25 ps @ 1KHz, 2.5 ms @ 10Hz

(b) simulation configurations

500 ns | 1000 ns | 1500 ns
5 Mmsgs/s X X

10 Mmsgs/s X X

Allreduce

500ns, 10 Mmsgs/s

25000 T T T T T T T T
Host Tree: Radix-8 ——+—
Host Tree: Radix-16 —>¢—
Triggered Tree: Radix-8 ——
Triggered Tree: Radix-16 —+—
Recursive Doubling —#—
20000 - Triggered Recursive Doubling —&— 1
2 15000 |- -
Q
£
=
[}
Q —
p=} —
o
2
Z 10000 |-
5000 P —t =]
/M
0 l !]] ! ! ! !
64 128 256 512 1024 2048 4096 8192 16384 32768

Nodes

Noise Simulations

* Three noise profiles were simulated (2.5% noise for each)
= 250 ns @ 100KHz
= 25 us @ 1KHz
= 2.5ms @ 10Hz
* Noise events were randomly distributed
= Stopped all host processing during a noise event
= NIC processing continued

 Timed individual collective operations (first entry to last exit)

Allreduce With Noise

25 us @ 1 KHz

T T T T
Host Tree: Radix-8 ——+—

140000 [~ Host Tree w/ Noise: Radix-8 —¢— .
Triggered Tree: Radix-16 ——
Triggered Tree w/ Noise: Radix-16 —+—
Recursive Doubling —#—

120000 [~ Recursive Doubling w/ Noise —&—
Triggered Recursive Doubling —£—
Triggered Recursive Doubling w/ Noise

100000 |-

80000 (-

Allreduce Time (ns)

60000 -

40000 |-

20000 | e
f — B—
——
@;—fﬁg b
0 1 | | | | | | |
64 128 256 512 1024 2048 4096 8192 16384 32768
Nodes

Noise Simulation Results

* Recursive doubling has poor noise tolerance
* Offload gives significant improvement in noise tolerance

= Partly from reduced time

= Partly from reduced host participation
= Synchronizing operation still cannot complete until everyone
contributes a value

* |[nteresting shape of curves in middle noise case
= Host based latency continues to grow with node count

= NIC based latency plateaus

Interesting Things We Learned

= Time to initiate a transaction from the host to the NIC
makes things difficult
= Even with a high NIC rate, can be rate limited by the host

= Limitation of using host to initiate all operations instead of
offloading algorithm

= |f transactions are posted in correct order, limitation is effectively
mitigated

= Proper message scheduling is important

= Time between message initiations on the host (gap) matches
network hop latency: send the far away ones first!

= Kk-nomial trees are better, but the work at the root limits
the maximum value of k

= You can have speed or reproducibility, but...

Triggered Collectives Summary

= Triggered operations provide a general set of building
blocks
= Supports a variety of collective operations
= Supports a variety of algorithms
= Has usage beyond just collectives offload

= Collective offload has limited performance upside versus
Idealized host implementation

= 2x performance improvement due to improved latency and
improved message rate

= Performance could be improved somewhat by having host
“push” data

= Noise sensitivity substantially reduced when operations
are offloaded

AMD Using Portals 4 for Co-Design

FASTFORWARD NIC SOFTWARE STACK

4 Portals 4 API chosen for initial investigation
- Supports multiple programming models: PGAS, MPI

4 mplemented in thin software layer over hardware
interface

A |everage existing ULPs that have Portals 4
implementations
- GASNet
- Open MPI

Interfaces

ULP

Portals 4

HSA-like
NIC I/F

AMDA

Components

Open MPI

Runtime SW

Simulated NIC

Summary

Portals 4 provides building blocks that support many ULPs
Encapsulates required semantics in a single API

Design decisions based on least constraints

Reference implementation available

= Trying to figure out how to not be just another layer of software
= Reference implementation performance should always be bad

Triggered operations can implement
= Non-blocking collective operations
= Efficient rendezvous protocol for long messages
= Recovery-based flow control for MPI

Simple cores may not support network onload very well

27

Acknowledgments

= Sandia
= Ryan Grant
= Scott Hemmert
= Kevin Pedretti
= Mike Levenhagen

= |ntel
= Keith Underwood
= Jerrie Coffman
= Roy Larsen
= Amazon
= Brian Barrett
= Micron
= Kyle Wheeler

http://www.cs.sandia.gov/Portals

:Q

portals

29

