Programming an Extended Memory
Hierarchy

Duncan Roweth
Cray CTO Office

Outline of my talk

e New elements of memory hierarchy

e Use cases

e Ideas on programming model integration
e Conclusions

\
. CRAY |
Memory hierarchy today .o
) \
\
1.E+03
\
1.E+02 O
L1 cache O
Yy L2 h
ig 1.E401 cache ®
Q L3 cache
<L
5 1.E+00
)
<
_"-é' 1.E-01 Q
3 DRAM
S
o
8 1LE02
1.£-03
O
Disk
1.E-04 T T T T T T T 1
1.E-06 1.E-05 1.E-04 1.E-03 1.6-02 1.E-01 1.E+00 1.E401 1.E402
Capacity (GB per S)

y
. : cCcRAY |
Additions to memory hierarchy .o
) \
\
1.E+03
\
1.E+02 O
L1 cache O
r L2 cach
:h: 1.E+01 cache O
o L3 cache
<
) 1.E+00
8
N -
BT 1E01 Q
3 DRAM
©
% N
o0 1.E-02
NVRAM
1.E-03
O
Disk
1.E-04 T T T T T T T 1
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
Capacity (GB per S)

Additions to memory hierarchy

1.E+03

1.E+02 O
L1 cache O

1.E+01 L2 cache

O

L3 cache
1.E+00

1.E-01 \
DRAM

[EEN
T
o
N

Bandwidth (GB/s per $)

1.E-03

Disk
1.E'04 T T T T T T T 1
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E4+02

Capacity (GB per S)

COMPUTE | STORE | ANALYZE

3/19/2014 Copyright Cray 2014

g
. C=RANY \‘
Memory hierarchy — trends SO0N
S \
v
1.E+03 \
\
1.E+02 O 7\
L1 cache O 7‘
Ty L2 cache
'(g 1.E+01 C O
o L3 cache
<
) 1.E+00
8
L
T 1E01 @
3 DRAM /1
©
S
o0 1.E-02
1.E-03
oO—>
Disk
1.E-04 T T T T T T T 1
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02
Capacity (GB per S)
COMPUTE | STORE | ANALYZE

3/19/2014 Copyright Cray 2014

System data network

[onPkG | ||| onPkG ||]] onPka | cecee
DRAM DRAM DRAM
NVRAM NVRAM NVRAM

[onpkG ||| onPKG |
DRAM DRAM
NVRAM NVRAM

Y

Compute nodes

Deployment of new memory technologies

DRAM
NVRAM

DRAM
NVRAM

DRAM
NVRAM

%—I

10 server
nodes

Enterprise
storage
network

Use cases

e Improved workflow
e Bandwidth optimized storage

e Improved analytics and visualization
e Tightly coupled access to the output of a simulation
e On-the-fly analysis and steering

e High memory applications

e A single application needs access to far more data than can
reasonably be held in DRAM

COMPUTE | STORE | ANALYZE

3/19/2014 Copyright Cray 2014

Resource management use cases «

e Allocate X TB of NVRAM across a set of nodes for Y days |
e EXxclusive access, one job
e Persistent access, set of jobs belonging to the same user
e Shared access, data is accessed by any job with permission

COMPUTE | STORE | ANALYZE

3/19/2014 Copyright Cray 2014 @

Use of new memory technologies

o\

 File system interfaces

-~ N B T BN
[onpPkG | ||| onPkG || || onPkG | YY) { onpkG | ||| onPkG |
NR AN NRAN NRAN NR AN NRAN
NVRAM NVRAM NVRAM NVRAM NVRAM

Y

Compute nodes

&

DRAM
NVRAM

DRAM
NVRAM

DRAM
NVRAM

a_/

10 server
nodes

Enterprise
storage
network

J

File system interfaces

e Separately managed file systems
e Cache of enterprise file system
e Many local file systems

e Active field
e PLFS, DACOS, DVS,

e Use cases addressed
e Bandwidth optimised local storage
e Some of the analysis and visualisation cases

COMPUTE | STORE | ANALYZE

3/19/2014 Copyright Cray 2014

Application use cases .o

e Using each stage of memory as a cache A
e On package memory as a cache of DRAM
e DRAM as a cache of NVRAM
e NVRAM as a cache of disk

e Provides an easy way of using new technology
e Hides some of the complexities
e But what about applications that don’t have a high degree

of locality?

e They will need to have large numbers of requests in flight in order to
hide the round trip latency.

e As when accessing remote memory

COMPUTE | STORE | ANALYZE

3/19/2014 Copyright Cray 2014 @

Application use cases .o

e Which data to hold at a particular level ? .
e Which data to read from the level below and then discard?

e Explicit data movement primitives
e Looks a lot like remote data access
e For example Put/Get

e Compiler directives
e For example #pragma acc data

e Area of significant interest for auto-tuning
e Instrument memory access patterns
e Use this data to determine which data to hold at which level
e Talk to my colleague Adrian Tate — his field of research

COMPUTE | STORE | ANALYZE

3/19/2014 Copyright Cray 2014 @

Parallel programming APIs?

e Do nothing

3/19/2014

Each process allocates and manages its own NVRAM

Integrates with MPI + X programming model at process level

No direct access to extended memory of the whole job

Easy to get going
Hard to build in resiliency

Likely to result in lots of different solutions to the same problem

COMPUTE

STORE

Copyright Cray 2014

ANALYZE

Parallel programming APIs?

e Direct access
Each process allocates its own NVRAM
Opens direct network access to it — e.g. MPI-3 RMA Window

Any process can access all of the NVRAM via RMA put/get operations
Reuses the existing client side API
Some system programming to do

3/19/2014

Good fit for latency hiding
Hard to build in resiliency

COMPUTE

STORE

Copyright Cray 2014

ANALYZE

Parallel programming APIs?

e Distributed object access

NVRAM allocated across some set of nodes — those in use by a job
and/or I/O server nodes as well

Client API distributes requests over servers

Similar client API: put/get/sync

Layer over the same network APl as MPI-3 RMA
Provides a way of hiding addressing and resiliency issues
Provides path to a wide range of analytics applications

e Could provide a means for different applications to be
accessing the same data

Simulation code updating objects

e Visualisation or analytics code consuming them

3/19/2014

COMPUTE | STORE | ANALYZE

Copyright Cray 2014

What else would | like to see?

e Integrated work distribution mechanism
e Move the work to the data

e Needs to be integrated into MPI
e Torsten has proposed this recently
e Natural extension of MPI-3 remote accumulate

COMPUTE | STORE | ANALYZE

3/19/2014 Copyright Cray 2014

Conclusions .

e We expect our future systems to make extensive use of
byte addressable NVRAM

e Important file system use cases
e Don’t require major changes to existing applications

e Easy to use caching mechanisms
e Will benefit some applications
e Other applications will require explicit data movement

e Interesting programming environment options:
e Direct access to the memory with explicit data movement
e Distributed object access

e Today’s hardware and software can be used to prototype
programming environment support

COMPUTE | STORE | ANALYZE

3/19/2014 Copyright Cray 2014

Further information

PLFS https://github.com/PLES

DVS http://docs.cray.com/books/S-0005-10/
Ramcloud http://ramcloud.stanford.edu

NVSL http://nvsl.ucsd.edu

OpenNVM http://opennvm.github.io

https://github.com/PLFS
https://github.com/PLFS
https://github.com/PLFS
http://docs.cray.com/books/S-0005-10/
http://docs.cray.com/books/S-0005-10/
http://docs.cray.com/books/S-0005-10/
http://docs.cray.com/books/S-0005-10/
http://docs.cray.com/books/S-0005-10/
http://docs.cray.com/books/S-0005-10/
http://ramcloud.stanford.edu/
http://ramcloud.stanford.edu/
http://nvsl.ucsd.edu/
http://nvsl.ucsd.edu/

