
Erik Lindahl
erik.lindahl@scilifelab.se

What do we need for HPC
to make a revolution in Life Science?

 St Moritz , SOS18

Needs, Possibilities & Challenges in Molecular Dynamics

March 18, 2014

mailto:lindahl@cbr.su.se

Molecular Dynamics

Simulations

Extreme detail

Sampling issues?

Parameter quality?

Experiments

Efficient averaging

Less detail

Chemistry
s -3 0-6-15 -12 -9 310 10 10 10 10 10 10s s s s s s

Where we

want to be

BiologyPhysics

Where we

need to be

Where we are

mi
∂2ri

∂t2 = Fi i = 1..N

Fi =�
∂V (r)

∂ri

V (r)=
Â

bonds

1

2

k

b

i j

�
r

i j

� r

0

i j

�
2

+
Â

angles

1

2

k

q

i jk

�
q

i jk

�q

0

i jk

�
2

+
Â

torsions

(

Â

n

k

q

[1+ cos(nf�f

0

)]

)

+
Â

impropers

k

x

�
x

i jkl

�x

0

i jkl

�

+
Â

i, j

q

i

q

j

4pe

0

r

i j

+
Â

i, j

"
C

12

r

12

i j

�C

6

r

6

i j

#

Molecular Mechanics

How can we achieve
longer simulations?

With a time step of 5fs...

... you need 200 million iterations to reach 
1 μs of simulated time

To achieve that in a day (86,400 seconds)...

...each iteration must complete in 432 (wallclock) μs!

Evolutions & Revolutions

DSF

F238

Lipids

Pore

A

M1

M2

M3

M4

DSF

A238

Lipids

Pore

DSF

F238

DSF

A238

C

B

D

Crystal
structure

Alternative
pose

Fig. 1: Intrasubunit cavity simulations

DSF

F238

A

M1

M2

M3

M4

DSF

A238

DSF

F238

DSF

A238

C

B

D

Kinked
helix

Alternative
rotamer

Fig. 2: Intersubunit cavity simulations

Displacement along z-axis

1μs/day:
Understanding motions

10μs/day:
Predicting motions

Interpreting/improving  
experiments

>100μs/day:
Replacing biochemistry 

experiments
>1ms/day:

Replacing medicine/biology 
experiments

We’re on the single-μs
scale today 

(for small systems)

Larger machines have
enabled larger

systems, not longer
simulations

Start

Communicate coordinates to

construct virtual sites

Construct virtual sites

Neighborsearch step?

Domain

decomposition

Send charges to peer

PME processor

Send x and box to

peer PME processor

Communicate x with real

space neighbor processors

(local)

neighborsearching

Evaluate potential/forces

Receive forces/energy/virial

from peer PME processor

Spread forces on virtual sites

Communicate forces from

virtual sites

Integrate coordinates

Constrain bond lengths

(parallel LINCS)

Sum energies of all real

space processors

Neighborsearch step?

Communicate f with real

space neighbor processors

All local coordinates

received?

Receive x and box from

peer real space processors

Neighborsearch step?

Received charges

from peer real space

processors

Communicate some atoms

to neighbor PME proc's

Spread charges on grid

Communicate grid overlap

with PME neighbor proc's

parallel 3D FFT

Solve PME (convolution)

parallel inverse 3D FFT

Communicate grid overlap

with PME neighbor proc's

Interpolate forces from grid

Communicate some forces

to neighbor PME proc's

Send forces/energy/virial to

peer real space processors

More steps? More steps?

Stop

PME nodeReal space (particle) node

Y

N

N N

N

N

N

Y

Y

Y Y

Y

Inherent limits to
parallelism

Larger supercomputer
do not address this

2010: ~300,000 cores

2014: ~3M cores
2012: ~1M cores

2016: ~10M cores
2018: ~30M cores

2020: ~100M cores
2022: ~300M cores

~2024: 1B ‘cores’

How will YOU
use a billion cores?

We keep scaling “up” (larger simulations) where we
should scale “down” (more fine-grained parallelism)!

Programming model

CPU
(PME)

GPU

N OpenMP
threads

1 MPI rank 1 MPI rank 1 MPI rank 1 MPI rank

N OpenMP
threads

N OpenMP
threads

N OpenMP
threads

1 GPU
context

1 GPU
context

1 GPU
context

1 GPU
context

Domain decomposition
dynamic load balancing

Load balancingLoad balancing

Gromacs-4.6 2nd-generation GPU acceleration:

{ {
100-500 μs We cannot afford to lose all 

previous acceleration tricks!

Heterogeneous CPU-GPU acceleration in GROMACS-4.6

Wallclock time for a step:
~0.5 ms if we want to simulate 1μs/day

Tiling circles is difficult!

• You need a lot of cubes to cover a sphere

• Algorithms developed last 40 years suck

From neighborlists to cluster
pair lists in GROMACS-4.6

X X X X
X X X X
X X X X
X X X X

Organize 
as tiles with

all-vs-all
interactions:

x,y,z
gridding

x,y grid
z sort
z bin

Cluster pairlist

but where does the
CPU come in now?

Start

Communicate coordinates to

construct virtual sites

Construct virtual sites

Neighborsearch step?

Domain

decomposition

Send charges to peer

PME processor

Send x and box to

peer PME processor

Communicate x with real

space neighbor processors

(local)

neighborsearching

Evaluate potential/forces

Receive forces/energy/virial

from peer PME processor

Spread forces on virtual sites

Communicate forces from

virtual sites

Integrate coordinates

Constrain bond lengths

(parallel LINCS)

Sum energies of all real

space processors

Neighborsearch step?

Communicate f with real

space neighbor processors

All local coordinates

received?

Receive x and box from

peer real space processors

Neighborsearch step?

Received charges

from peer real space

processors

Communicate some atoms

to neighbor PME proc's

Spread charges on grid

Communicate grid overlap

with PME neighbor proc's

parallel 3D FFT

Solve PME (convolution)

parallel inverse 3D FFT

Communicate grid overlap

with PME neighbor proc's

Interpolate forces from grid

Communicate some forces

to neighbor PME proc's

Send forces/energy/virial to

peer real space processors

More steps? More steps?

Stop

PME nodeReal space (particle) node

Y

N

N N

N

N

N

Y

Y

Y Y

Y

CPU SIMD units like streaming algorithms:
Significant scaling improvements!

Strong scaling:!
40-80 atoms/core!
for small systems

Performance:!
12k Xeon cores!
running Gromacs!
on SuperMUC!
beats 880k cores!
running MODYLAS!
on K computer

~1300 atoms/GPU

Coding challenges
> 2 million lines of C/C++ code
Extremely tuned: SIMD, Kernel generators, >2 IPC
C++ modules, C kernels, MPI (MPMD), OpenMP, CUDA

Lots of complex/smart algorithms

Not just a matter of scaling: The fastest flops are the
ones we avoid calculating

Applications care about performance - not scaling!
Much scientific software (including ours)
originally written by amateurs

Finally becoming serious about QA

Mini-apps under development - devil is in the detail…

Libraries have been disappointing;
not enough fine-grained control

A lot of low-level tuning
GPU SMX scheduling/balancing

1.5 3 6 12 24 48 96 192 384 768 1536 3072
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
C2070

GTX 580

Quadro K5000

GTX 680

TITAN

K20c – 705 MHz

K20c – 758 MHz

K40c – 745 MHz

K40c – 875 MHz

system size (x1000 atoms)

ke
rn

e
l

ti
m

e
 (

m
s)

88μs actual time (1000 atoms)

If we solve all latency
bottlenecks, we would approach 30μs

Hardware challenges
Extreme-scale HPC is expensive

A 60M core-hour project in 
PRACE might cost 2-3M EUR today

We will increasingly have to justify
this in comparison with alternatives

Exascale machines will likely have to be used
for rapid time-to-solution, not to run single

projects for weeks and months

Our development approach
Total rewrites difficult

QA challenges
Easily leads to focus on relative scaling (not perf.)

Increasing modularization enables refactoring
2005-2010: NT Domain Decomposition
2008-2013: GPU/Streaming acceleration
2010-2012: Heterogeneous acceleration
2013-2014: Move stream version back to CPUs
2014-: Fine-grained task-based scheduler (raw threads)
Nodes as a set of heterogeneous resources (LOC+TOC);
Communication devices are also resources

We live VERY close to the hardware
Most abstraction layers suck…

What can we learn from ASICs?  
ANTON, MDGRAPE4

2x2x2 chips in a node
64 cores & 8 pipelines / chip
Optical interconnects (~100ns)

Pipelines working on 8x8 atoms
Extremely fine-grained parallelism
~2.5 TFLOP / chip ~10μs/step

The importance of a balanced architecture: 
We could reach similar raw FLOP levels with GPUs, but
we are not be able to push them as efficiently today!

Drawback: ASICs highly inflexible, no general solution

What machine does MD need?
Stop building HPC systems that consist of “N desktops”!
Go hierarchical, and fully expose hardware & connect
- Even tighter connects further down
- Looser connects further up

~64 LOC
~4 TOC

no PCIe!

Optical, 100ns <1μs, single-hop

“Islands”:
Say >4*4*4 units
>32768 cores
>2048 GPUs

“If I had asked my customers what they wanted, they	

would have said a faster horse” [Henry Ford]

From ~100k cores
to Exascale: Ensembles

SI
M

D
SI

M
D

SI
M

D
SI

M
D

SI
M

D
SI

M
D

SI
M

D
SI

M
D

SI
M

D
SI

M
D

SI
M

D
SI

M
D

Thread Thread Thread

MPI MPI MPI

Worker WorkerWorker

Server

IB

SSL

Shared
memory

Average: 0.04MB/s
Peak: 100MB/s

Latency: 10 ms

Average: 0.5GB/s
Peak: >2.7GB/s

Latency: 1-10 s

Average: 0.5GB/s
Peak: 25GB/s

Latency: <100ns

Server

ServerServer

Latency: >100ms

Cluster

Markov State Models

Swarms / Transition pathways

Milestoning

Monte Carlo Sampling
Free Energies

Open source software available at 
http://www.copernicus-computing.org/

copernicus
Current plugins:

• Markov State Modeling
•Swarms
•Free Energies

Under development:

•Collective variables

HPC	 ENSEMBLE	 COMPUTING

http://www.copernicus-computing.org

Summary
STRONG scaling & absolute performance

Throw out all old algorithms

Heterogeneous acceleration

Hierarchical hardware needed

Task-based parallelism

We live close to the hardware

Stanford University
James Trudell
Edward Bertaccini

UTexas Austin
(*) Rebecca Howard

Adron Harris

Biophysics/ion channels:
Samuel Murail (*)

Torben Brö
Özge Yoluk (*)

Iman Pouya
Jens Carlsson

Sophie Schwaiger
Göran Klement

Magnus Andersson

Method Development:
Szilárd Páll (*)
Berk Hess (*)
Sander Pronk
Viveca Lindahl
Petter Johansson
Grant Rotskoff
Anders Gabrielsson
Christian Wennberg

Linköping University
Sara Börjesson
Fredrik Elinder

