

Simulation Codes in the Human Brain Project

Prof. Dr. Felix Schürmann EPFL, CH

Some Numbers on the Brain

- Rat brain*
 - ~200M (2x108) nerve cells
 - ~130M glial cells
 - ~O(10¹²) synapses

- Human brain**
 - ~90B (10¹¹) nerve cells
 - ~90B glial cells
 - ~O(10¹⁵) synapses
- Each cell a universe***
 ~O(10B) proteins/nerve cell

^{*} Herculano-Houzel et al. 2006; **Herculano-Houzel 2009; *** Sims et al. 2007

Relevant Scales

Qualitative Simulator Landscape*

Simulation Codes in the HBP Ramp-up Phase

http://www.nest-initiative.org/

Markus Diesmann, Hans-Ekkehard Plesser, Marc-Oliver Gewaltig ODEs; loose (global) coupling

http://www.neuron.yale.edu

Michael Hines

ODEs, LinAlg; loose(global)/tight(specific) coupling

http://www.nest-initiative.org/ Erik De Schutter

Gillespie SSA, diffusion via NN coupling

ly-based simulations of neurons and networks of neurons

- → All are open source
- → All have a scripting interface (python) for model setup
- → All have C/C++ compute core
- → All have their community mission and roadmap and HBP complements

In HBP: Anchored to the Neuron

 $y' = 0.04v^2 + 5v + 140 - u + 1$ u'= a(bv - u) if v = 30 mV.

then v-c, u-u+d

Single Compartment HH model

$$\frac{C_m dV_m}{dt} = \frac{E_m - V_m}{R_m} + I_{channels}$$

$$\frac{d\mathbf{m}}{dt} = \alpha_{\mathbf{m}}(V_m)(1-\mathbf{m}) - \beta_{\mathbf{m}}(V_m)\mathbf{m}$$

$$rac{d\mathbf{h}}{dt} = lpha_{\mathbf{h}}(V_m)(1-\mathbf{h}) - eta_{\mathbf{h}}(V_m)\mathbf{h}$$

 $I_{channel} = \mathbf{m}^n \mathbf{h} g_{channel} (V_m - E_{channel})$

Multi Compartment HH model

$$\begin{split} \frac{C_m dV_m}{dt} &= \frac{E_m - V_m}{R_m} + I_{chennels} \\ &+ \frac{2(V_{m_{i+1}} - V_{m_i})}{R_{a_{i+1}} + R_a} + \frac{2(V_{m_{i-1}} - V_{m_i})}{R_{a_{i-1}} + R_a} \end{split}$$

Reaction-Diffusion model

$$\dot{p}(\mathbf{x};t) = -p(\mathbf{x};t) \sum_{\mu=1}^{M} a_{\mu}(\mathbf{x}) + \sum_{\mu=1}^{M} p(\mathbf{x} - s_{\mu};t) a_{\mu}(\mathbf{x} - s_{\mu})$$

C040896A-P2

Useful Properties of Neuron-based Abstraction

No spike evoked at time t can arrive at any postsynaptic cell sooner than t+min $\{t_{axonaldelay}\}$

Initial Development Goals for NEST, NEURON

- Interactive Supercomputing
 - Use of dense memory; high memory bandwidth
 - Malleability (dynamical runtime)
 - Interaction with analysis and visualization frameworks
- Scalability (Communication, Memory!)
 - To support full brain scale models
 - Reduce memory footprint
- Software Engineering
 - Test driven development; Agile teams
 - Software lifecycle model
 - → NEST has good practice
 - → NEURON has a lot of legacy → coreNEURON
- Efficiency
 - Mini-Apps
 - Accelerator support while maintaining flexibility
 - → Abstraction of SIMD

Subcellular Details

 $v' = 0.04v^2 + 5v + 140 - u + 1$ if v = 30 mV,

Single Compartment HH model

$$\frac{C_m dV_m}{dt} = \frac{E_m - V_m}{R_m} + I_{channels}$$

$$\frac{d\mathbf{m}}{dt} = \alpha_{\mathbf{m}}(V_m)(1-\mathbf{m}) - \beta_{\mathbf{m}}(V_m)\mathbf{m}$$

$$\frac{d\mathbf{h}}{dt} = \alpha_{\mathbf{h}}(V_m)(1-\mathbf{h}) - \beta_{\mathbf{h}}(V_m)\mathbf{h}$$

$$I_{channel} = \mathbf{m}^n \mathbf{h} g_{channel} (V_m - E_{channel})$$

Multi Compartment HH model

$$egin{split} rac{C_m dV_m}{dt} &= rac{E_m - V_m}{R_m} + I_{channels} \ &+ rac{2(V_{m_{i+1}} - V_{m_i})}{R_{a_{i+1}} + R_a} + rac{2(V_{m_{i-1}} - V_{m_i})}{R_{a_{i-1}} + R_a} \end{split}$$

Reaction-Diffusion model

C040896A-P2

Х

50

$$\dot{p}(\mathbf{x};t) = -p(\mathbf{x},t) \sum_{\mu=1}^{M} a_{\mu}(\mathbf{x}) + \sum_{\mu=1}^{M} p(\mathbf{x}-s_{\mu};t)a_{\mu}(\mathbf{x}-s_{\mu};t)$$

Reaction... and...Diffusion

Reactions

Brownian Motion & Stochastic Diffusion

- → General Finite Volume, Finite Element for PDEs
- → Continuous Random Walk (e.g. MCell)
- → Random Walk on discrete lattice
- → Voxel-based methods (e.g. MesoRD, STEPS)

From

Computational Modeling Methods for Neuroscientists ed. Erik de Schutter

STEPS Simulator

STochastic Engine for Pathway Simulation:

Simulation algorithm

- Each tetrahedron (grey) is a well-mixed volume, in which reactions can occur (Gillespie, 1977).
- Neighbouring tetrahedrons are coupled by diffusive fluxes.
- Triangles (black) act as boundaries and can also embed molecules. These can bind to ligands and transport volume molecules in between tetrahedrons belonging to different compartments.

http://steps.sourceforge.net/

$$\begin{array}{ll} \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Na_{x}^{+}} & = \mathrm{J_{leak,Na}^{x}} - 3\,\mathrm{J_{pump}^{x}} + \mathrm{J_{stim}^{x}}(t) \\ \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLC_{n}} & = \mathrm{J_{GLC}^{en}} - \mathrm{J_{HKPFK}^{n}} \\ \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLC_{g}} & = \mathrm{J_{GLC}^{eg}} + \mathrm{J_{GLC}^{eg}} - \mathrm{J_{HKPFK}^{g}} \\ \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GAP_{x}} & = 2\,\mathrm{J_{HKPFK}^{x}} - \mathrm{J_{PGK}^{x}} \\ \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PEP_{x}} & = \mathrm{J_{PGK}^{x}} - \mathrm{J_{PK}^{x}} \\ \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PYR_{x}} & = \mathrm{J_{PK}^{x}} - \mathrm{J_{LDH}^{x}} - \mathrm{J_{mito,in}^{x}} \\ \frac{\mathrm{d}}{\mathrm{d}t}\mathrm{LAC_{n}} & = \mathrm{J_{LDH}^{n}} - \mathrm{J_{LAC}^{ne}} \end{array}$$

Erik De Schutter

Contacts

The Human Brain Project Consortium http://www.humanbrainproject.eu

Contacts:

Prof. Henry Markram

Director Blue Brain Project

Coordinator Human Brain Project

Email: henry.markram@epfl.ch

Prof. Felix Schürmann Blue Brain Project

Email: felix.schuermann@epfl.ch

