
Robert L. Clay, SOS-18

“Everything You Know
Is Wrong”  

(Reflections On a Few Basic Assumptions)  
 
 

Robert L. Clay, Ph.D.
Manager, Scalable Modeling and Analysis Systems

Sandia National Laboratories

SOS-18 Workshop
March 18, 2014

St. Moritz, Switzerland

"

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000. !

Robert L. Clay, SOS-18

Inspired by Firesign Theatre"

And a sense that we need to rethink a few things

“This album addresses
and parodies pseudo-
scientific beliefs of the
mid-1970s.” – Wikipedia.

Robert L. Clay, SOS-18

More specifically, let’s
examine some of our
assumptions around

HPC resilience."

Robert L. Clay, SOS-18

What is HPC Resilience?"

• We define resilient HPC as correct and efficient
computations at scale despite system
degradations and failures.

• Resilience is a cross cutting issue:
² Hardware
² Operating System
² System Management
² Runtime (Execution Model)
² Application / Algorithms
² Multi-layer (any/all combinations of the above)

Robert L. Clay, SOS-18

Assumption 1: Computers are reliable
digital machines."

Doesn’t get much more basic than this, but
it’s wrong [at some scale].

Robert L. Clay, SOS-18

MTTI is shrinking as # cores grows"

(Courtesy of John Daly)

Robert L. Clay, SOS-18

Oldfield et al., Modeling the Impact of Checkpoints on Next-Generation
Systems. MSST, 2007

Checkpoint trend isn’t good "

 Machine utilization is going to zero! (Not really)

(Courtesy of Lucy Nowell & Sonia Sachs)

Schroeder and Gibson, Understanding Failures in Petascale
Computers. Journal of Physics, 2007

(assuming that the number of cores per socket grows by a factor of 2
every 18, 24 and 30 months)

Robert L. Clay, SOS-18

Checkpoint/Restart: Disproportional response to
local failures"

•  Single node failures account for the major (~2/3) HPC
system failures

•  Short MTBFs due to the increase of error-prone
components
§  Today: ~ twice a day
§  2020: every 30-60 minutes?

•  Hardware Solution is infeasible
§  Performance loss
§  Power budget (20MW per system)

•  Current practice of Checkpoint/Restart is a disproportional
response to single node failure
§  Kill all processes (global terminate)
§  Recovery involves global restart
§  Dependent on Global File system to keep application state

We seek a Local Failure Local Recovery
(LFLR) resilient programming model to
allow proportional response to single

node/process failure

8

Robert L. Clay, SOS-18

LFLR Programming Model"

9

Run

Run

Run

P0

P1

P2

Run Px Kill

Kill

Kill

Kill

Restart

Restart

Restart

Restart

Run

Run

Run

Run Crash

Run P0

P1

P2

Run Px

Run

Crash

Notify Error to
everybody

Stand by Px+1 Join

Run as Px

Wait

Notify Error

Run

Run

Checkpoint Restart

Our Approach

Robert L. Clay, SOS-18

Architecture of LFLR "

10

Process Manager

Sparse
Matrix Vector Mesh

Recovery Manager

Parallel Execution Runtime

Persistent Storage

Application Program

Buddy/Parity
in memory

PDE Solver

•  Detect and notify process failure(s)
•  Continue program execution with a presence of process failure

•  Query for process status
•  Manage process assignment for lost work

•  Persistent Storage for Application State and data
•  Use on node memory of spare process

•  Restore the application state and data from process failure

•  Provides API for writing resilient application with ease

MPI-ULFM (UTK)
runs through node loss

Spare Process
management

Base class for
Application data

Scientific Data

Similar Projects:
•  LLNL
•  Rutgers U

Robert L. Clay, SOS-18

MPI-ULFM: User Level Fault
Mitigation"

•  Proposed for MPI-3.1 standard
•  MPI calls (recv, irecv, wait, collectives) notify errors when

the peer process(es) dies
•  Healthy processes can continue
•  Several MPI calls for fixing MPI communicator

§  MPI_Comm_agree : Check the global status of MPI_Comm
§  MPI_Comm_revoke: Invalidate MPI Communicator
§  MPI_Comm_shrink: Fix MPI Communicator removing dead process

•  User is responsible for the recovery after
MPI_Comm_shrink call

•  Prototype code is available at http://fault-tolerance.org
§  Developed by U of Tennessee (G. Bosilica)

Robert L. Clay, SOS-18

Scalable Recovery Via Spare Process Reserve"

•  ULFM-MPI only provides minimum set of APIs for process loss
§  Many apps need to remap the work after communicator shrink L
§  Vendor’s MPI (such as Cray) does not support MPI_Comm_spawn

•  Allocate hot spare process to replace the lost process
§  Can be used for the other resiliency features

•  3 MPI calls to perform rank re-assignment
§  MPI_Comm_shrink
§  MPI_Comm_create
§  MPI_comm_split 12

MPI processes for computation

Spare MPI Processes

Robert L. Clay, SOS-18

Persistent Storage and Its Options"

•  In-memory, persistent storage
§  RAID-like redundancy
§  Performed by group (of 128 or 256)

•  Staging nodes
§  Dedicated nodes to store temporary

data
§  We exploit spare nodes

•  Caching by compute node
§  Exploit all available I/O resources
§  Handles more catastrophic faults
§  Scalable Checkpoint and Restart (by

Mohror et al.)

13

P1

P0 P2 P1 Spare

P0 P2 P1 Spare

XOR

XOR

Global File
System

Staging
Nodes

Computing
Nodes

I/O
Nodes

We employ in-memory storage of spare
processes dedicated for checksum/parity

Robert L. Clay, SOS-18

Preliminary Result"

•  Time Stepping PDE (MiniFE Mantevo proxy app)
§  3D Finite Element
§  Multiple Linear System Solution
§  RHS is updated by LHS in the previous linear system solve

•  Resiliency Features

§  Spare Process is used for recovery
§  Application info are stored only once
§  Vectors are stored in every time step

•  Weak scaling
§  64x64x64 for ULFM for 4 cores and increase the problem size (x*y*z) linearly
§  Cray Cluster with SandyBridge (2.6Mhz) 16 cores (2CPU) per node, FDR Infiniband
§  Process failure during linear system solve (2048 PEs)

•  MPI-ULFM with our own fix for resilient collective

14

Robert L. Clay, SOS-18

Results with MPI-ULFM"

15

•  Group size = 128
•  Negligible overhead for Persistent Data Store
•  Negligible overhead for Failure Detection
•  Recovery cost increases from 512 cores or larger

200

250

300

350

400

450

500

550

600

0 512 1024 1536 2048

Se
co

nd
s

of Cores

Performance of Time Stepping MiniFE

All Solve+Failure All Solve (No Failure)

Store Detection

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

0 512 1024 1536 2048

Se
co

nd
se

of Cores

Performance Time Stepping MiniFE

All Solve+Failure

All Solve (No
Failure)
Store

Detection

Comm_agree

Robert L. Clay, SOS-18

Results with MPI-ULFM"

•  Negligible Cost for data recovery
§  Very scalable

•  Scalability Issues in Communicator fix
§  Already reduced by >10x (improvements ongoing)

16

0

2

4

6

8

10

12

14

0 512 1024 1536 2048

Se
co

nd
s

of cores

Recovery Cost

Pesistent Restore

Data Regen

Comm Fix

Comm_agree

Recovery All

Robert L. Clay, SOS-18

Assumption 2: We don’t need to
change our codes much."

Also known as “MPI is fine”. Also known as
“MPI + X” where X is undefined, but it will
work itself out over time. The real question
may be whether the CSP BSP programming
model will work well at exascale.

Robert L. Clay, SOS-18

Programming model exploration for
resilience with simulation"

X

X

X

X

=

=

=

=

X

X

X

X

=

=

=

=

X

X

X

X

=

=

=

=

1

Systolic matrix-matrix multiplication involves “synchronous”
migration of matrix blocks.

Start with MPI.

Actual MPI code Simulator code

With a few linker tricks, you get direct compilation of source code. No DSL! Only
one source to maintain!

Robert L. Clay, SOS-18

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

 4500

%
of
 t
ot
al

Time(ms)

Application Activity Over Time

MPI
Compute
Memory

Programming model exploration:
SPMD resilience results"

Fixed-time quanta (FTQ) shows
where app is spending time. Here
MPI “stutters” during synchronous
exchange

 0 1000
 2000

 3000
 4000

 5000
 6000

 7000
 8000

%
of

 t
ot

al

Time(ms)

Application Activity Over Time

MPI
Compute
Memory

Slowing 1 core on 1 of 8 nodes
gradually chokes off computation due
to MPI synchronization

If all nodes the same
speed…

If one node
overheats or has
bad DIMM and
slows down…

Synchronous MPI
data exchange

Robert L. Clay, SOS-18

Programming model exploration: 
asynchronous, task-DAG model"

If all nodes the same
speed…

Termination detection/
work stealing needs to
be optimized

Data movement service
is constant overhead –
single thread dedicated
to communication

If node slows down… With load balancing…

Robert L. Clay, SOS-18

Demonstrated resilience to silent data corruption in
our on-node, task-based conjugate gradient solver

driven by miniFE proxy app"
•  Automatically detected/corrected multi-bit silent data corruption in user

data structures using triple-modular redundancy for scalars and 2D
checksums for vectors and matrices (application/algorithm agnostic)

§  Technique	 applied	 selec/vely	 by	
self-‐stabilizing	 CG	 algorithm	 in	
order	 to	 lower	 protec/on	 cost	
§  0.8%	 memory	 overhead	 on	

protected	 data	 structures	
§  20%	 increase	 in	 run/me	 due	

to	 checksum	 valida/on	 on	
every	 20th	 itera/on	

1

10

100

1000

1 2 4 8 16 32

W
al

lti
m

e
(s

ec
on

ds
)

Threads

Strong Scalability of CG Solve

NUMA-aware OpenMP
Non-resilient FTPM
Resilient FTPM

Benchmarks from SGI Altix UV 10 with four 8-core Nehalem EX and 512 GB globally-shared memory

Robert L. Clay, SOS-18

Assumption 3: Well, at least the
algorithms will work."

Maybe, maybe not.

Robert L. Clay, SOS-18

Error-Correcting Algorithms Can Mitigate
Silent Errors & Offer New Co-design Options"

•  Even at commodity scale, ECC memory & ECC processors show
the rising need for error correction

•  With increasing scale and with power limitations, errors can occur
“silently” without indication that something is wrong

•  Numerical algorithms already deal with error from truncation, etc.;
specially designed algorithms can mitigate silent bit flips as well

•  These robust stencil algorithms not only address scale-up of
current silent-error rates, but may enable new “lossy” architecture
options with more power-efficient accelerators or reduced latency

ECC memory

Robert L. Clay, SOS-18

Robust stencils can discard outliers  
to mitigate bit flips in PDE solving"

•  A simple 1D advection
equation ∂u/∂t = ∂u/∂x
illustrates the behavior
of finite-difference
schemes

•  The robust stencil here
computes a second-order update
at position i from
one of these subsets after
discarding the most
extreme value:
§  { i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3 }
§  { i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3 }
§  { i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3 }

Simple demo in
Mathematica

Robert L. Clay, SOS-18

Preliminary Weak-Scaling Experiments  
Show Favorable Trends for Robust Stencil"

•  As a research tool for ongoing use, we have implemented a
modular C++/MPI framework for explicit Cartesian PDE solvers
§  Captures “halo exchange” pattern in generic form

•  Preliminary results from many short runs, 106 grid cells per core

•  Further questions:
•  How does resilience scale with longer runs and more realistic PDEs?
•  How realistic is our way of emulating memory bit flips?
•  What happens if bit flips also occur in message communication?

~3× runtime
~5000×

~106×

Manageable overhead

Increasing
resilience
advantage

Robert L. Clay, SOS-18

Summary"

§ Obviously, the title was a joke. But, I do think
we need to re-examine some of our long-
standing assumptions.

§  Some of the ongoing work looks promising for
certain important failure modes (e.g., node
loss).

§  The CSP BSP programming model may not
hold up long term. Asynchronous, many-task
programming models are interesting.

§  Silent data corruption may require we re-
evaluate things at an even deeper level.

Robert L. Clay, SOS-18

Acknowledgements"

§ Rob Armstrong (Robust Stencils)
§  Janine Bennett (pmodels)
§ Mike Heroux (LFLR)
§ Hemanth Kolla (pmodels)
§  Jackson Mayo (Robust Stencils)
§  Philippe Pebay (SST/macro)
§ Nicole Slattengren (pmodels)
§  Keita Teranishi (LFLR)
§  Jeremiah Wilke (SST/macro)

Robert L. Clay, SOS-18

Thank You 
 
 

Robert L. Clay  
rlclay@sandia.gov 
+1 (209) 610-2929"

Favorite assumption that didn’t make the list:
If you buy a bigger computer, your code will
run faster.

