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Inspired by Firesign Theatre"

And a sense that we need to rethink a few things 

“This album addresses 
and parodies pseudo-
scientific beliefs of the 
mid-1970s.” – Wikipedia. 
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More specifically, let’s 
examine some of our 
assumptions around 

HPC resilience."
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What is HPC Resilience?"

• We define resilient HPC as correct and efficient 
computations at scale despite system 
degradations and failures.  

• Resilience is a cross cutting issue: 
² Hardware 
² Operating System 
² System Management 
² Runtime (Execution Model) 
² Application / Algorithms 
² Multi-layer (any/all combinations of the above) 
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Assumption 1: Computers are reliable 
digital machines."

Doesn’t get much more basic than this, but 
it’s wrong [at some scale]. 
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MTTI is shrinking as # cores grows"

(Courtesy of John Daly) 
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Oldfield et al., Modeling the Impact of Checkpoints on Next-Generation 
Systems.  MSST, 2007 

Checkpoint trend isn’t good "

  Machine utilization is going to zero!  (Not really) 

(Courtesy of Lucy Nowell & Sonia Sachs) 

Schroeder and Gibson, Understanding Failures in Petascale 
Computers.  Journal of Physics, 2007 
 
(assuming that the number of cores per socket grows by a factor of 2 
every 18, 24 and 30 months) 
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Checkpoint/Restart: Disproportional response to 
local failures"

•  Single node failures account for the major (~2/3) HPC 
system failures  

•  Short MTBFs due to the increase of error-prone 
components 
§  Today: ~ twice a day   
§  2020: every 30-60 minutes? 

•  Hardware Solution is infeasible 
§  Performance loss 
§  Power budget (20MW per system) 

•  Current practice of Checkpoint/Restart is a disproportional 
response to single node failure 
§  Kill all processes (global terminate)  
§  Recovery involves global restart  
§  Dependent on Global File system to keep application state  

We seek a Local Failure Local Recovery 
(LFLR) resilient programming model to 
allow proportional response to single 

node/process failure 
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LFLR Programming Model"
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Architecture of LFLR "
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Process Manager 

Sparse 
Matrix Vector Mesh 

Recovery Manager 

Parallel Execution Runtime 

Persistent Storage 

Application Program 

Buddy/Parity 
in memory 

PDE Solver 

•  Detect and notify process failure(s) 
•  Continue program execution with a presence of process failure 

•  Query for process status 
•  Manage process assignment for lost work 

•  Persistent Storage for Application State and data 
•  Use on node memory of spare process 

•  Restore the application state and data from process failure 

•  Provides API for writing resilient application with ease 

MPI-ULFM (UTK) 
runs through node loss 

Spare Process 
management 

Base class for  
Application data 

Scientific Data 

Similar Projects: 
•  LLNL 
•  Rutgers U 
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MPI-ULFM: User Level Fault 
Mitigation"

•  Proposed for MPI-3.1 standard 
•  MPI calls (recv, irecv, wait,  collectives) notify errors when 

the peer process(es) dies 
•  Healthy processes can continue 
•  Several MPI calls for fixing MPI communicator 

§  MPI_Comm_agree : Check the global status of MPI_Comm 
§  MPI_Comm_revoke: Invalidate MPI Communicator 
§  MPI_Comm_shrink: Fix MPI Communicator removing dead process 

•  User is responsible for the recovery after 
MPI_Comm_shrink call 

•  Prototype code is available at http://fault-tolerance.org 
§  Developed by U of Tennessee (G. Bosilica) 
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Scalable Recovery Via Spare Process Reserve"

•  ULFM-MPI only provides minimum set of APIs for process loss 
§  Many apps need to remap the work after communicator shrink L 
§  Vendor’s MPI (such as Cray) does not support MPI_Comm_spawn  

•  Allocate hot spare process to replace the lost process 
§  Can be used for the other resiliency features 

•  3 MPI calls to perform rank re-assignment 
§  MPI_Comm_shrink 
§  MPI_Comm_create 
§  MPI_comm_split 12 

MPI processes for computation 

Spare MPI Processes 
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Persistent Storage and Its Options"

•  In-memory, persistent storage 
§  RAID-like redundancy 
§  Performed by group (of 128 or 256) 

•  Staging nodes 
§  Dedicated nodes to store temporary 

data 
§  We exploit spare nodes 

•  Caching by compute node  
§  Exploit all available I/O resources 
§  Handles more catastrophic faults 
§  Scalable Checkpoint and Restart (by 

Mohror et al.) 
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Preliminary Result"

•  Time Stepping PDE (MiniFE Mantevo proxy app) 
§  3D Finite Element 
§  Multiple Linear System Solution 
§  RHS is updated by LHS in the previous linear system solve 

 
•  Resiliency Features 

§  Spare Process is used for recovery 
§  Application info are stored only once  
§  Vectors are stored in every time step 

•  Weak scaling 
§  64x64x64 for ULFM for 4 cores and increase the problem size (x*y*z) linearly 
§  Cray Cluster with SandyBridge (2.6Mhz) 16 cores (2CPU) per node, FDR Infiniband 
§  Process failure during linear system solve (2048 PEs) 

•  MPI-ULFM with our own fix for resilient collective 

14 
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Results with MPI-ULFM"
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•  Group size = 128 
•  Negligible overhead for Persistent Data Store 
•  Negligible overhead for Failure Detection 
•  Recovery cost increases from 512 cores or larger  
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Results with MPI-ULFM"

•  Negligible Cost for data recovery 
§  Very scalable 

•  Scalability Issues in Communicator fix 
§  Already reduced by >10x (improvements ongoing) 
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Assumption 2: We don’t need to 
change our codes much."

Also known as “MPI is fine”.  Also known as 
“MPI + X” where X is undefined, but it will 
work itself out over time.  The real question 
may be whether the CSP BSP programming 
model will work well at exascale.  
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Programming model exploration for 
resilience with simulation"
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Systolic matrix-matrix multiplication involves “synchronous” 
migration of matrix blocks.  

Start with MPI. 

Actual MPI code Simulator code 

With a few linker tricks, you get direct compilation of source code. No DSL! Only 
one source to maintain! 
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Programming model exploration: 
SPMD resilience results"

Fixed-time quanta (FTQ) shows 
where app is spending time. Here 
MPI “stutters” during synchronous 
exchange 
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Slowing 1 core on 1 of 8 nodes 
gradually chokes off computation due 
to MPI synchronization 

If all nodes the same 
speed… 

If one node 
overheats or has 
bad DIMM and 
slows down… 

Synchronous MPI 
data exchange 
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Programming model exploration: 
asynchronous, task-DAG model"

If all nodes the same 
speed… 

Termination detection/ 
work stealing needs to 
be optimized 

Data movement service 
is constant overhead – 
single thread dedicated 
to communication 

If node slows down… With load balancing… 
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Demonstrated resilience to silent data corruption in 
our on-node, task-based conjugate gradient solver 

driven by miniFE proxy app"
•  Automatically detected/corrected multi-bit silent data corruption in user 

data structures using triple-modular redundancy for scalars and 2D 
checksums for vectors and matrices (application/algorithm agnostic) 

§  Technique	  applied	  selec/vely	  by	  
self-‐stabilizing	  CG	  algorithm	  in	  
order	  to	  lower	  protec/on	  cost	  
§  0.8%	  memory	  overhead	  on	  

protected	  data	  structures	  
§  20%	  increase	  in	  run/me	  due	  

to	  checksum	  valida/on	  on	  
every	  20th	  itera/on	  
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Assumption 3: Well, at least the 
algorithms will work."

Maybe, maybe not. 
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Error-Correcting Algorithms Can Mitigate 
Silent Errors & Offer New Co-design Options"

•  Even at commodity scale, ECC memory & ECC processors show 
the rising need for error correction 
 

•  With increasing scale and with power limitations, errors can occur 
“silently” without indication that something is wrong 

•  Numerical algorithms already deal with error from truncation, etc.; 
specially designed algorithms can mitigate silent bit flips as well 
 
 
 
 
 

•  These robust stencil algorithms not only address scale-up of 
current silent-error rates, but may enable new “lossy” architecture 
options with more power-efficient accelerators or reduced latency 

ECC memory 
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Robust stencils can discard outliers  
to mitigate bit flips in PDE solving"

•  A simple 1D advection 
equation ∂u/∂t = ∂u/∂x 
illustrates the behavior 
of finite-difference 
schemes 

•  The robust stencil here 
computes a second-order update 
at position i from 
one of these subsets after 
discarding the most 
extreme value: 
§  { i − 3, i − 2, i − 1,  i,  i + 1, i + 2, i + 3 } 
§  { i − 3, i − 2, i − 1,  i,  i + 1, i + 2, i + 3 } 
§  { i − 3, i − 2, i − 1,  i,  i + 1, i + 2, i + 3 } 

Simple demo in 
Mathematica 
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Preliminary Weak-Scaling Experiments  
Show Favorable Trends for Robust Stencil"

•  As a research tool for ongoing use, we have implemented a 
modular C++/MPI framework for explicit Cartesian PDE solvers 
§  Captures “halo exchange” pattern in generic form 

•  Preliminary results from many short runs, 106 grid cells per core 

•  Further questions: 
•  How does resilience scale with longer runs and more realistic PDEs? 
•  How realistic is our way of emulating memory bit flips? 
•  What happens if bit flips also occur in message communication? 

~3× runtime 
~5000× 

~106× 

Manageable overhead 

Increasing 
resilience 
advantage 
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Summary"

§ Obviously, the title was a joke.  But, I do think 
we need to re-examine some of our long-
standing assumptions. 

§  Some of the ongoing work looks promising for 
certain important failure modes (e.g., node 
loss). 

§  The CSP BSP programming model may not 
hold up long term.  Asynchronous, many-task 
programming models are interesting. 

§  Silent data corruption may require we re-
evaluate things at an even deeper level.   
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Thank You 
 
 

Robert L. Clay  
rlclay@sandia.gov 
+1 (209) 610-2929"

Favorite assumption that didn’t make the list: 
If you buy a bigger computer, your code will 
run faster. 


