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Inspired by Firesign Theatre

“This album addresses
and parodies pseudo-
scientific beliefs of the

mid-1970s.” — Wikipedia.

And a sense that we need to rethink a few things
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More specifically, let’s
examine some of our
assumptions around

HPC resilience.
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What is HPC Resilience?

* We define resilient HPC as correct and efficient
computations at scale despite system
degradations and failures.

* Resilience is a cross cutting issue:
<~Hardware
+~Operating System
+~System Management
<~Runtime (Execution Model)
<Application / Algorithms
<~Multi-layer (any/all combinations of the above)
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Assumption 1: Computers are reliable
digital machines.

Doesn’t get much more basic than this, but
it's wrong [at some scale].
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MTTI is shrinking as # cores grows

Failure at LANL: 140,000 Interrupt Events on 21
Platforms Show Remarkably Similar Trends

Application MTTI for Averages Across Platforms (2006)
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Checkpoint trend isn’t good

Percent of Execution for Checkpoints (Traditional FS)
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Effective application utilization (including checkpoint overhead) at 3 rates of
hardware failure

(Courtesy of Lucy Nowell & Sonia Sachs)
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(assuming that the number of cores per socket grows by a factor of 2
every 18, 24 and 30 months)

Machine utilization is going to zero! (Not really)
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""Bheckpoint/Restart: Disproportional response to
local failures

« Single node failures account for the major (~2/3) HPC
system failures

 Short MTBFs due to the increase of error-prone
components
- Today: ~ twice a day
= 2020: every 30-60 minutes?

« Hardware Solution is infeasible
= Performance loss
- Power l'u.l.d.a.n.LL').ﬂ.l\ﬂ"\’ nnnnnnn tonra)

* Current | Wwe seek a Local Failure Local Recovery [oportional
respons| (LFLR) resilient programming model to
- Killally allow proportional response to single
. Recove node/process failure
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R LFLR Programming Model

PO Run Kill Restart Run
P1 Run Kill Restart Run
P2 Run

Run Restart

Px Restart

Px Run as Px
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e Architecture of LFLR

PDE Solver Application Program

Scientific Data

Base class for o |
Application data Restore the application state and data from process failure

\f \ | .
Buddy/Parity + Persistent Storage for Application State and data

in memory

Spare Process
management

Similar Projects:
« LLNL

* Rutgers U
MPI-ULFM (UTK)

runs through node loss
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MPI-ULFM: User Level Fault
Mitigation

* Proposed for MPI-3.1 standard

* MPI calls (recv, irecv, wait, collectives) notify errors when
the peer process(es) dies

* Healthy processes can continue

« Several MPI calls for fixing MPI communicator
« MPI_Comm_agree : Check the global status of MPI_Comm
= MPI_Comm_revoke: Invalidate MPI Communicator
= MPI_Comm_shrink: Fix MPI Communicator removing dead process
* User is responsible for the recovery after
MPI_Comm_shrink call

* Prototype code is available at http://fault-tolerance.org
= Developed by U of Tennessee (G. Bosilica)

Sandia
ﬂ" National

Laboratories

Robert L. Clay, SOS-18




' gcalable Recovery Via Spare Process Reserve

MPI processes for computation

Spare MPI Processes

* ULFM-MPI only provides minimum set of APIs for process loss
= Many apps need to remap the work after communicator shrink ®
= Vendor’s MPI (such as Cray) does not support MPI_Comm_spawn
* Allocate hot spare process to replace the lost process
= Can be used for the other resiliency features
* 3 MPI calls to perform rank re-assignment
= MPI_Comm_shrink
= MPI_Comm_create
= MPI_comm_split d2
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X Persistent Storage and Its Options

 In-memory, persistent storage XOR
= RAID-like redundancy @ °
= Performed by group (of 128 or 256) YOR

« Staging nodes @ ° @ﬂe

- Dedicated nodes to store temporary

data
- We e )
. Cachin We employ in-memory storage of spare
. Expl processes dedicated for checksum/parity
- Hand
- Scalable Checkpoint and Restart (by Computing Staging Vo
Mohror et al.) oo Nodes oces
“-1 o ~ _GlobalFile
’J | = g A System
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Preliminary Result

« Time Stepping PDE (MiniFE Mantevo proxy app)
= 3D Finite Element
= Multiple Linear System Solution
= RHS is updated by LHS in the previous linear system solve

* Resiliency Features
= Spare Process is used for recovery
= Application info are stored only once
= Vectors are stored in every time step

 Weak scaling
= 64x64x64 for ULFM for 4 cores and increase the problem size (x*y*z) linearly
= Cray Cluster with SandyBridge (2.6Mhz) 16 cores (2CPU) per node, FDR Infiniband

= Process failure during linear system solve (2048 PEs)
« MPI-ULFM with our own fix for resilient collective
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Results with MPI-ULFM

Performance Time Stepping MiniFE
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Performance of Time Stepping MiniFE
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Results with MPI-ULFM

Recovery Cost
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©
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Negligible Cost for data recovery
= Very scalable

Scalability Issues in Communicator fix
= Already reduced by >10x (improvements ongoing)

\ gaﬁ_;dia
Robert L. Clay, SOS-18 f@} Fi | Nationa

Laboratories




Assumption 2: We don’t need to
change our codes much.

Also known as “MPI is fine”. Also known as
“MPI + X” where X is undefined, but it will
work itself out over time. The real question
may be whether the CSP BSP programming
model will work well at exascale.
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Programming model exploration for
resilience with simulation

TX :

gl
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Systolic matrix-matrix multiplication involves “synchronous’

ﬂpxm

4

migration of matrix blocks.
Start with MPI.

Actual MPI code

for (int iter=0; iter < niter; ++iter){

/** Prefetch next iteration */

MPI_Isend(left_block, nelems_left_block, MPI_DOUBLE,
row_send_partner, row_tag, MPI_COMM_WORLD, &reqs[@]);
MPI_Isend(right_block, nelems_right_block, MPI_DOUBLE,
col_send_partner, col_tag, MPI_COMM_WORLD, &regs[1]);
MPI_Irecv(next_left_block, nelems_left_block, MPI_DOUBLE,
row_recv_partner, row_tag, MPI_COMM_WORLD, &regs[2]);
MPI_Irecv(next_right_block, nelems_right_block, MPI_DOUBLE,
col_recv_partner, col_tag, MPI_COMM_WORLD, &regs[3]);

DGEMM('T', 'T', nrows, ncols, nlink, 1.0, left_block, nrows,

fight_block, ncols, @, product_block, nrows);

With a few linker tricks, you get direct compilation of source code. No DSL! Only
one source to maintain!
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Simulator code

for (int iter=0; iter < niter; ++iter){
/** Prefetch next iteration */
MPI_Isend(left_block, nelems_left_block, MPI_DOUBLE,

Y

row_send_partner, row_tag, MPI_COMM_WORLD, &reqs[@]);

MPI_Isend(right_block, nelems_right_block, MPI_DOUBLE,

col_send_partner, col_tag, MPI_COMM_WORLD, &reqgs[1]);

MPI_Irecv(next_left_block, nelems_left_block, MPI_DOUBLE,

row_recv_partner, row_tag, MPI_COMM_WORLD, &reqgs[2]);

MPI_Irecv(next_right_block, nelems_right_block, MPI_DOUBLE,

col_recv_partner, col_tag, MPI_COMM_WORLD, &reqgs[3]);

T E

DGEMM('T', 'T', nrows, ncols, nlink, 1.0, left_block, nrows,
fight_block, ncols, @, product_block, nrows);
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Programming model exploration:

SPMD resilience results

Synchronous MPI

data exchange
App A i AQtivity Over Time

If all nodes the same
speed...

If one node
overheats or has
bad DIMM and

slows down...

Robert L. Clay, SOS-18

— Memorg
— Compu e

Fixed-time quanta (FTQ) shows
where app is spending time. Here
MPI “stutters” during synchronous
exchange
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" Programming model exploration:

asynchronous, task-DAG model

Application Activity Over Time

mem Sleep ) ) .
== Compute  Termination detection/

we= Server work stealing needs to
be optimized

If all nodes the same
speed...

Data movement service
is constant overhead —

single thread dedicated
to communication

% of total

o o, o o, o o o,
¢ Tfme(lﬁs) ¢ o © ¢
If node slows down... With load balancing...
Application Activity Over Time Application Activity Over Time

s Sleep
=== Compute
mmm Server

mm Sleep
=== Compute
mmm Server

% of total
% of total
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——
Demonstrated resilience to silent data corruption in

our on-node, task-based conjugate gradient solver
driven by miniFE proxy app

« Automatically detected/corrected multi-bit silent data corruption in user
data structures using triple-modular redundancy for scalars and 2D
checksums for vectors and matrices (application/algorithm agnostic)

Strong Scalability of CG Solve ' . '
1000 = Technique applied selectively by

self-stabilizing CG algorithm in
order to lower protection cost

M
T
s 10¢ = 0.8% memory overhead on
[}
e protected data structures
£ : : :
s 10 = 20% increase in runtime due
2 ¢ s
*=NUMA-aware OpenMP | to checksum validation on
«@=Non-resilient FTPM . .
=®=Resilient FTPM every 20" jteration
1
1 2 4 8 16 32

Threads

Benchmarks from SGI Altix UV 10 with four 8-core Nehalem EX and 512 GB globally-shared memory
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Assumption 3: Well, at least the
algorithms will work.

Maybe, maybe not.
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Error-Correcting Algorithms Can Mitigate

Silent Errors & Offer New Co-design Options

+ Even at commodity scale, ECC memory & ECC processors show

the rising need for error correction
. ECC memory

* With increasing scale and with power limitations, errors can occur
“silently” without indication that something is wrong

* Numerical algorithms already deal with error from truncation, etc.;
specially designed algorithms can mitigate silent bit flips as well

Error Stable Correction

Y

Interpolation
x-2 | x-1| X |x+1|x+2|— x-2 X Ix+1|x+2 x-2 | x-1| X [x+1|x+2|—| x-2| x-1| X |x+1|x+2

= . \
.- m . .- ¢ m . . - .. . -
w I

* These robust stencil algorithms not only address scale-up of
current silent-error rates, but may enable new “lossy” architecture
options with more power-efficient accelerators or reduced latency
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Robust stencils can discard outliers
to mitigate bit flips in PDE solving

« A simple 1D advection
equation dul/dt = dulox
illustrates the behavior
of finite-difference
schemes

 The robust stencil here
computes a second-order u
at position i from
one of these subsets after
discarding the most
extreme value:

- {i-3, i-1, i+1,
- i-2, i j+2
- i-1, i, i+1
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Average glitches
per time step

0.1

Lax—Wendroff

Lax—Wendroff
with viscosity

Robust stencil
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Preliminary Weak-Scaling Experiments
Show Favorable Trends for Robust Stencil

« As a research tool for ongoing use, we have implemented a

modular C++/MPI framework for explicit Cartesian PDE solvers

- Captures “halo exchange” pattern in generic form

* Preliminary results from many short runs, 10° grid cells per core

£8 105,

30 P Py ° 9 | @ & L 2 Y
= Robust 22 ' Robust
E g °oE 10°7
5 2.0 ~3x% runtime S E o000 Increasing
22 s 5 resilience ~106x
[ oc 10
= 15 8 advantage
m < E=3 i) -

210 e—* ¢ ° T L
5 Standard za 10 11 N .
205 Manageable overhead ¥ Standard
0.0 — R R m'q';10_13 . . T e
1 5 10 50 100 5001000 =G 1 5 10 50 100 500 1000
Cores Cores

* Further questions:

- How does resilience scale with longer runs and more realistic PDEs?

- How realistic is our way of emulating memory bit flips?
- What happens if bit flips also occur in message communication?
Robert L. Clay, SOS-18
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Summary

= Obviously, the title was a joke. But, | do think
we need to re-examine some of our long-
standing assumptions.

= Some of the ongoing work looks promising for
certain important failure modes (e.g., node
loss).

» The CSP BSP programming model may not
hold up long term. Asynchronous, many-task
programming models are interesting.

» Silent data corruption may require we re-
evaluate things at an even deeper level.
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Thank You

Robert L. Clay
riclay @sandia.gov
+1 (209) 610-2929

Favorite assumption that didn’'t make the list:
If you buy a bigger computer, your code will
run faster.
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